Inelastic collision Two angles and final velocities

Click For Summary
The discussion centers on solving an inelastic collision problem involving two blocks, M1 and M2, with given masses and initial velocities. The user is attempting to apply conservation of momentum and energy principles but is struggling with the correct setup for the equations, particularly in separating the momentum into x and y components. Clarifications are provided regarding the need for two distinct momentum conservation equations for each direction, as momentum is a vector quantity. The user acknowledges confusion over the initial conditions and seeks guidance on properly structuring the equations to find the final velocities and angles post-collision. The conversation emphasizes the importance of understanding vector components in momentum conservation for solving inelastic collision problems.
-PhysicsMajor-
Messages
2
Reaction score
0

Homework Statement


Consider an inelastic collision between two blocks on a horizontal plane. Block M1 is moving with velocity Vo and collides with block M2 which is at rest. During the collision a fraction Q of the original kinetic energy is lost. It is observed that M1 is deflected by an angle theta (above the x axis), and M2 is deflected at an angle phi (below the x axis). After the collision M1 is moving to the right.

Find the angle phi, and the final velocities of the blocks.

M1=2kg
M2=4kg
Vo=10m/sec
Theta=30o
Q=.2

Homework Equations


Inital Momentum = Final Momentum (M1iVo+M2iVo =M1fVf+M2fVf)

KEf = (1-Q)KEi

*I'm sure there are more but this is what I have from class.

The Attempt at a Solution



Finding the final KE was easy enough using the above equation: KE inital =100 KE final =80

Then I tried to split them up in the x and y components. They both start with zero in the y direction and only M1 has initial momentum in the x direction. In the Y direction after the impact I got some sin and cos directions
So M1iVo = M1V1fCos(theta)+M2V2fcos(phi)+M1V1f-M2V2fsin(phi) (negative because it is below the x axis)
If that is right (big if) I have no clue where to go from here. I really don't know how to turn the final kinetic energy into two different objects and I REALLY don't know how to find that phi angle. I'm at a complete loss.

This is my first post here so hopefully formatted the question correctly. This stuff is really stressing me out. Every time I think that I've stumbled upon something useful online, it just seems way to simple, which is pretty much a guarantee that it can't help me. Our homework consists of just a few problems over the course of a week, and when he shows examples in class my professor fills several chalkboards full of calculations. So anything that is a quick answer must be wrong.

I don't want the answer, I just need a nudge in the right direction of how to even set up the problem. I have not found a single thing online that can help with these intermediate inelastic collisions with two objects of a different mass.

This forum is my last hope.

*Way too many words, not nearly enough physics. Sorry
 

Attachments

  • collisionproblem.jpg
    collisionproblem.jpg
    5.1 KB · Views: 522
Physics news on Phys.org
-PhysicsMajor- said:
So M1iVo = M1V1fCos(theta)+M2V2fcos(phi)+M1V1f-M2V2fsin(phi)
you seem to have a basic misapprehension regarding momentum.
Momentum is a vector, and your 'relevant equation' for its conservation should be interpreted in that light.
When resolving into separate X and Y directions, that gives you two momentum conservation equations, one for each direction. But you appear to have collapsed them into one scalar equation.
 
haruspex said:
you seem to have a basic misapprehension regarding momentum.
Momentum is a vector, and your 'relevant equation' for its conservation should be interpreted in that light.
When resolving into separate X and Y directions, that gives you two momentum conservation equations, one for each direction. But you appear to have collapsed them into one scalar equation.
Thank you for bringing this up, because it seemed wrong when I was doing it. I guess I just got confused because there is no inital momentum in the y direction.

So
Pix=Pfx = M1iVo = M1V1fCos(theta)+M2V2fcos(phi)
Piy = Pfy = 0 = M1V1fsin(theta)-M2V2fsin(phi)

??
 
-PhysicsMajor- said:
Thank you for bringing this up, because it seemed wrong when I was doing it. I guess I just got confused because there is no inital momentum in the y direction.

So
Pix=Pfx = M1iVo = M1V1fCos(theta)+M2V2fcos(phi)
Piy = Pfy = 0 = M1V1fsin(theta)-M2V2fsin(phi)

??
Yes.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
9
Views
2K
Replies
10
Views
3K
Replies
3
Views
989
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K