MHB Inequality of cubic and exponential functions

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $3^n\ge(n+3)^3$ for any natural number $n\ge6$.
 
Mathematics news on Phys.org
This problem is same as
$3^{n-3} > = n^3$ or $3^n >= 27n^3$ for $n >=9$
To prove the same we use principle of mathematical induction

Base step
For n = 9 $LHS = 3^9 = 3^3 * 3^6 = 27 * 9^3$ so $3^n >= 27n^3$
So base step is true
Now $(\frac{n+1}{n})^3$ decreases as n increases and at n = 9 we have $(\frac{n+1}{n})^3= \frac{1000}{729}< 3$
So $(\frac{n+1}{n})^3< 3$ for all $n>=9$
Or $3 > (\frac{k+1}{k})^3\cdots(1)$ for all $k>=9$

Induction step
Let it be true for n = k $k >=9$
We need to prove it to be true for n = k+ 1
$3^k > = 27 k^3$
Multiplying by (1) on both sides
$3^{k+1} > = 27 * (\frac{k+1}{k})^3 * k^3 $
Or $3^{k+1} >= 27(k+1)^3$
So it is true for n = k+ 1
We have proved the induction step also

Hence proved
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K