MHB Inequality of cubic and exponential functions

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $3^n\ge(n+3)^3$ for any natural number $n\ge6$.
 
Mathematics news on Phys.org
This problem is same as
$3^{n-3} > = n^3$ or $3^n >= 27n^3$ for $n >=9$
To prove the same we use principle of mathematical induction

Base step
For n = 9 $LHS = 3^9 = 3^3 * 3^6 = 27 * 9^3$ so $3^n >= 27n^3$
So base step is true
Now $(\frac{n+1}{n})^3$ decreases as n increases and at n = 9 we have $(\frac{n+1}{n})^3= \frac{1000}{729}< 3$
So $(\frac{n+1}{n})^3< 3$ for all $n>=9$
Or $3 > (\frac{k+1}{k})^3\cdots(1)$ for all $k>=9$

Induction step
Let it be true for n = k $k >=9$
We need to prove it to be true for n = k+ 1
$3^k > = 27 k^3$
Multiplying by (1) on both sides
$3^{k+1} > = 27 * (\frac{k+1}{k})^3 * k^3 $
Or $3^{k+1} >= 27(k+1)^3$
So it is true for n = k+ 1
We have proved the induction step also

Hence proved
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K