MHB Inequality of logarithm function

Click For Summary
The discussion centers on proving the inequality involving logarithmic functions of real numbers a, b, and c, constrained by the condition a + b + c = 9. The inequality to be proven is that the sum of the square roots of the logarithmic expressions is less than or equal to 3√6. Participants engage in deriving the proof and exploring the properties of logarithms to establish the validity of the inequality. The conversation highlights the mathematical techniques and reasoning necessary to tackle such inequalities. The proof ultimately confirms the stated inequality holds under the given conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let the reals $a, b, c∈(1,\,∞)$ with $a + b + c = 9$.

Prove the following inequality holds:

$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}\le 3\sqrt{6}$.
 
Mathematics news on Phys.org
anemone said:
Let the reals $a, b, c∈(1,\,∞)$ with $a + b + c = 9$.

Prove the following inequality holds:

$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}\le 3\sqrt{6}$.
for:
$\log_3a^b >0,\log_3a^c>0,$
$\log_3b^a >0,\log_3b^c>0,$
$\log_3c^a >0,\log_3c^b>0,$
here $a, b, c∈(1,\,∞)$
if $a=b=c=3$ then equality holds
if $a=b=1,c=7$ then
$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}=\sqrt{(\log_37+\log_37)}<3\sqrt 6$
and $3\sqrt 6$ is a maximum value
 
Thanks Albert for participating!

My solution:

By applying the Cauchy-Schwarz inequality to the LHS of the intended inequality gives
$$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}$$

$$\le \sqrt{1+1+1}\sqrt{\log_3a^b +\log_3a^c+\log_3b^c +\log_3b^a+\log_3c^a +\log_3c^b}$$

$$=\sqrt{3}\sqrt{\log_3a^a +\log_3a^b+\log_3a^c+\log_3b^a +\log_3b^b+\log_3b^c+\log_3c^a +\log_3c^b+\log_3c^c-\log_3a^a-\log_3b^b-\log_3c^c}$$

$$=\sqrt{3}\sqrt{\log_3a^{a+b+c} +\log_3b^{a+b+c} +\log_3c^{a+b+c} -(\log_3a^a+\log_3b^b+\log_3c^c})$$

$$=\sqrt{3}\sqrt{(a+b+c)\log_3abc -(\log_3a^a+\log_3b^b+\log_3c^c})$$

$$=\sqrt{3}\sqrt{9\log_33^3 -(\log_3a^a+\log_3b^b+\log_3c^c})$$ since $$a+b+c=9\ge 3\sqrt[3]{abc}\implies abc \le 3^3$$

$$=\sqrt{3}\sqrt{27 -(a\log_3a+b\log_3b+c\log_3c})$$

Now, if we're to study the nature of the function for $$f(a)=a\log_3 a$$, we know it's a concave up and an increasing function, we could use the Jensen's inequality to figure out the minimum of $$a\log_3a+b\log_3b+c\log_3c$$:

$$\frac{a\log_3a+b\log_3b+c\log_3c}{3}\ge \frac{a+b+c}{3}\log_3\left(\frac{a+b+c}{3}\right)=\frac{9}{3}\log_3\left(\frac{9}{3}\right)=3$$

$$\therefore a\log_3a+b\log_3b+c\log_3c=3(3)=9$$

Now we get the maximum of the LHS of the intended inequality as:

$$\begin{align*}\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}&\le \sqrt{3}\sqrt{27 -(a\log_3a+b\log_3b+c\log_3c})\\& \le \sqrt{3}\sqrt{27 -9}\\&=\sqrt{3}\sqrt{18}\\&=\sqrt{9}\sqrt{6}\\&=3\sqrt{6}\end{align*}$$

with equality when $$a=b=c=3$$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
962
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K