Inequality of logarithm function

Click For Summary
SUMMARY

The inequality $\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}\le 3\sqrt{6}$ holds for real numbers $a, b, c \in (1, \infty)$ with the constraint $a + b + c = 9$. The logarithmic expressions utilize base 3, specifically $\log_3$, and the proof involves manipulating these logarithmic identities to demonstrate the inequality's validity. This discussion emphasizes the importance of logarithmic properties in inequality proofs.

PREREQUISITES
  • Understanding of logarithmic functions, specifically $\log_3$
  • Familiarity with inequalities and proof techniques in mathematics
  • Knowledge of real number properties and constraints
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of logarithmic functions, focusing on $\log_3$ and its applications
  • Explore advanced inequality techniques, such as Cauchy-Schwarz and Jensen's inequality
  • Investigate other mathematical proofs involving constraints on sums of variables
  • Practice solving similar inequalities with different bases and constraints
USEFUL FOR

Mathematicians, students studying advanced algebra, and anyone interested in inequality proofs and logarithmic functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let the reals $a, b, c∈(1,\,∞)$ with $a + b + c = 9$.

Prove the following inequality holds:

$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}\le 3\sqrt{6}$.
 
Physics news on Phys.org
anemone said:
Let the reals $a, b, c∈(1,\,∞)$ with $a + b + c = 9$.

Prove the following inequality holds:

$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}\le 3\sqrt{6}$.
for:
$\log_3a^b >0,\log_3a^c>0,$
$\log_3b^a >0,\log_3b^c>0,$
$\log_3c^a >0,\log_3c^b>0,$
here $a, b, c∈(1,\,∞)$
if $a=b=c=3$ then equality holds
if $a=b=1,c=7$ then
$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}=\sqrt{(\log_37+\log_37)}<3\sqrt 6$
and $3\sqrt 6$ is a maximum value
 
Thanks Albert for participating!

My solution:

By applying the Cauchy-Schwarz inequality to the LHS of the intended inequality gives
$$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}$$

$$\le \sqrt{1+1+1}\sqrt{\log_3a^b +\log_3a^c+\log_3b^c +\log_3b^a+\log_3c^a +\log_3c^b}$$

$$=\sqrt{3}\sqrt{\log_3a^a +\log_3a^b+\log_3a^c+\log_3b^a +\log_3b^b+\log_3b^c+\log_3c^a +\log_3c^b+\log_3c^c-\log_3a^a-\log_3b^b-\log_3c^c}$$

$$=\sqrt{3}\sqrt{\log_3a^{a+b+c} +\log_3b^{a+b+c} +\log_3c^{a+b+c} -(\log_3a^a+\log_3b^b+\log_3c^c})$$

$$=\sqrt{3}\sqrt{(a+b+c)\log_3abc -(\log_3a^a+\log_3b^b+\log_3c^c})$$

$$=\sqrt{3}\sqrt{9\log_33^3 -(\log_3a^a+\log_3b^b+\log_3c^c})$$ since $$a+b+c=9\ge 3\sqrt[3]{abc}\implies abc \le 3^3$$

$$=\sqrt{3}\sqrt{27 -(a\log_3a+b\log_3b+c\log_3c})$$

Now, if we're to study the nature of the function for $$f(a)=a\log_3 a$$, we know it's a concave up and an increasing function, we could use the Jensen's inequality to figure out the minimum of $$a\log_3a+b\log_3b+c\log_3c$$:

$$\frac{a\log_3a+b\log_3b+c\log_3c}{3}\ge \frac{a+b+c}{3}\log_3\left(\frac{a+b+c}{3}\right)=\frac{9}{3}\log_3\left(\frac{9}{3}\right)=3$$

$$\therefore a\log_3a+b\log_3b+c\log_3c=3(3)=9$$

Now we get the maximum of the LHS of the intended inequality as:

$$\begin{align*}\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}&\le \sqrt{3}\sqrt{27 -(a\log_3a+b\log_3b+c\log_3c})\\& \le \sqrt{3}\sqrt{27 -9}\\&=\sqrt{3}\sqrt{18}\\&=\sqrt{9}\sqrt{6}\\&=3\sqrt{6}\end{align*}$$

with equality when $$a=b=c=3$$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K