Inequality of positive real numbers

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $x$ and $y$ are positive real numbers, prove that $4x^4+4y^3+5x^2+y+1\ge 12xy$.
 
Mathematics news on Phys.org
Applying the arithmetic-mean geometric-mean inequality three* times:

From $4x^4 + 1 \geq^* 2 \sqrt{4x^4} = 4x^2$ and $4y^3+y \geq^* 2\sqrt{4y^4}= 4y^2$ - we have

$4x^4+4y^3+5x^2+y+1 \geq 9x^2 + 4y^2 \geq^* 2\sqrt{36x^2y^2} = 12xy$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K