MHB Infinite Geometric Series and Convergence

Click For Summary
The discussion focuses on finding the common ratio for an infinite geometric series. For a series with an initial term of 4 that converges to a sum of 16/3, the common ratio is calculated as r = 1/4. Another series is analyzed, leading to a common ratio of r = √5/2, which is greater than 1. Since this ratio exceeds 1, the series diverges. The key takeaway is that a common ratio greater than or equal to 1 indicates divergence in infinite geometric series.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
a. Find the common ration $r$, for an infinite series
with an initial term $4$ that converges to a sum of $\displaystyle\frac{16}{3}$
$$\displaystyle S=\frac{a}{1-r} $$ so $\displaystyle\frac{16}{3}=\frac{4}{1-r}$ then $\displaystyle r=\frac{1}{4}$

b. Consider the infinite geometric series

$\displaystyle
\frac{8}{25} + \frac{4\sqrt{5}}{25}+\frac{2}{5}+\frac{\sqrt{5}}{5}+\cdot\cdot\cdot$

c. What is the exact value of the common ratio of the series
$\frac{8}{25}\cdot r = \frac{4\sqrt{5}}{25}$ so $r=\frac{\sqrt{5}}{2}$d. Does the series converge?

not sure how to do this?
 
Last edited:
Mathematics news on Phys.org
Hi karush,

Your final answer for part a is correct.
To find the common ratio, $r$, solve $\dfrac{16}{3}=\dfrac{4}{1-r}$ for $r$.
Please show your work.

Part d:

Is $\dfrac{\sqrt5}{2}$ greater than, less than or equal to $1$? What does your answer to this question imply?
 
a. Find the common ration $r$, for an infinite series
with an initial term $4$ that converges to a sum of $\displaystyle\frac{16}{3}$
$$\displaystyle S=\frac{a}{1-r} =$$
so $\displaystyle\frac{16}{3}=\frac{4}{1-r} \\
3\cdot4 = 16\left(1-r\right)\implies12=16-16r\implies4=16r\implies r=\frac{4}{16}=\frac{1}{4}$b. Consider the infinite geometric series

$\displaystyle
\frac{8}{25} + \frac{4\sqrt{5}}{25}+\frac{2}{5}+\frac{\sqrt{5}}{5}+\cdot\cdot\cdot$

c. What is the exact value of the common ratio of the series
$\frac{8}{25}\cdot r = \frac{4\sqrt{5}}{25}$ so $r=\frac{\sqrt{5}}{2}$d. Does the series converge?

$\frac{\sqrt{5}}{2}=1.11$ $r\ge1$ no it divergess
 
Last edited:
$r>1$

Correct. :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K