Infinite Geometric Series and Convergence

Click For Summary
SUMMARY

The discussion focuses on the convergence of infinite geometric series, specifically calculating the common ratio for two series. For the first series with an initial term of 4 and a sum of \(\frac{16}{3}\), the common ratio \(r\) is determined to be \(\frac{1}{4}\). The second series, \(\frac{8}{25} + \frac{4\sqrt{5}}{25} + \frac{2}{5} + \frac{\sqrt{5}}{5} + \cdots\), yields a common ratio of \(r = \frac{\sqrt{5}}{2}\). Since \(\frac{\sqrt{5}}{2} > 1\), this series diverges.

PREREQUISITES
  • Understanding of infinite geometric series
  • Knowledge of convergence criteria for series
  • Familiarity with algebraic manipulation of equations
  • Basic knowledge of square roots and their properties
NEXT STEPS
  • Study the convergence criteria for geometric series
  • Learn about the formula for the sum of an infinite geometric series
  • Explore examples of divergent series in calculus
  • Investigate the implications of common ratios greater than 1
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and series convergence, as well as anyone seeking to deepen their understanding of geometric series.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
a. Find the common ration $r$, for an infinite series
with an initial term $4$ that converges to a sum of $\displaystyle\frac{16}{3}$
$$\displaystyle S=\frac{a}{1-r} $$ so $\displaystyle\frac{16}{3}=\frac{4}{1-r}$ then $\displaystyle r=\frac{1}{4}$

b. Consider the infinite geometric series

$\displaystyle
\frac{8}{25} + \frac{4\sqrt{5}}{25}+\frac{2}{5}+\frac{\sqrt{5}}{5}+\cdot\cdot\cdot$

c. What is the exact value of the common ratio of the series
$\frac{8}{25}\cdot r = \frac{4\sqrt{5}}{25}$ so $r=\frac{\sqrt{5}}{2}$d. Does the series converge?

not sure how to do this?
 
Last edited:
Physics news on Phys.org
Hi karush,

Your final answer for part a is correct.
To find the common ratio, $r$, solve $\dfrac{16}{3}=\dfrac{4}{1-r}$ for $r$.
Please show your work.

Part d:

Is $\dfrac{\sqrt5}{2}$ greater than, less than or equal to $1$? What does your answer to this question imply?
 
a. Find the common ration $r$, for an infinite series
with an initial term $4$ that converges to a sum of $\displaystyle\frac{16}{3}$
$$\displaystyle S=\frac{a}{1-r} =$$
so $\displaystyle\frac{16}{3}=\frac{4}{1-r} \\
3\cdot4 = 16\left(1-r\right)\implies12=16-16r\implies4=16r\implies r=\frac{4}{16}=\frac{1}{4}$b. Consider the infinite geometric series

$\displaystyle
\frac{8}{25} + \frac{4\sqrt{5}}{25}+\frac{2}{5}+\frac{\sqrt{5}}{5}+\cdot\cdot\cdot$

c. What is the exact value of the common ratio of the series
$\frac{8}{25}\cdot r = \frac{4\sqrt{5}}{25}$ so $r=\frac{\sqrt{5}}{2}$d. Does the series converge?

$\frac{\sqrt{5}}{2}=1.11$ $r\ge1$ no it divergess
 
Last edited:
$r>1$

Correct. :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
447
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K