Infinite Geometric Series and Convergence

Click For Summary

Discussion Overview

The discussion revolves around the convergence of infinite geometric series, specifically focusing on finding the common ratio and determining whether the series converges or diverges. It includes mathematical reasoning and exploration of the properties of geometric series.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants calculate the common ratio for an infinite series with an initial term of 4 and a sum of 16/3, arriving at r = 1/4.
  • There is a consideration of another infinite geometric series, with participants determining the common ratio to be r = √5/2.
  • One participant questions whether the series converges based on the value of the common ratio in relation to 1.
  • Another participant asserts that since r = √5/2 is greater than 1, the series diverges.

Areas of Agreement / Disagreement

Participants generally agree on the calculation of the common ratio for the first series, but there is disagreement regarding the convergence of the second series, with differing interpretations of the implications of the common ratio being greater than 1.

Contextual Notes

The discussion does not resolve the implications of the common ratio for convergence definitively, as participants express varying views on the criteria for convergence in relation to the calculated ratios.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
a. Find the common ration $r$, for an infinite series
with an initial term $4$ that converges to a sum of $\displaystyle\frac{16}{3}$
$$\displaystyle S=\frac{a}{1-r} $$ so $\displaystyle\frac{16}{3}=\frac{4}{1-r}$ then $\displaystyle r=\frac{1}{4}$

b. Consider the infinite geometric series

$\displaystyle
\frac{8}{25} + \frac{4\sqrt{5}}{25}+\frac{2}{5}+\frac{\sqrt{5}}{5}+\cdot\cdot\cdot$

c. What is the exact value of the common ratio of the series
$\frac{8}{25}\cdot r = \frac{4\sqrt{5}}{25}$ so $r=\frac{\sqrt{5}}{2}$d. Does the series converge?

not sure how to do this?
 
Last edited:
Physics news on Phys.org
Hi karush,

Your final answer for part a is correct.
To find the common ratio, $r$, solve $\dfrac{16}{3}=\dfrac{4}{1-r}$ for $r$.
Please show your work.

Part d:

Is $\dfrac{\sqrt5}{2}$ greater than, less than or equal to $1$? What does your answer to this question imply?
 
a. Find the common ration $r$, for an infinite series
with an initial term $4$ that converges to a sum of $\displaystyle\frac{16}{3}$
$$\displaystyle S=\frac{a}{1-r} =$$
so $\displaystyle\frac{16}{3}=\frac{4}{1-r} \\
3\cdot4 = 16\left(1-r\right)\implies12=16-16r\implies4=16r\implies r=\frac{4}{16}=\frac{1}{4}$b. Consider the infinite geometric series

$\displaystyle
\frac{8}{25} + \frac{4\sqrt{5}}{25}+\frac{2}{5}+\frac{\sqrt{5}}{5}+\cdot\cdot\cdot$

c. What is the exact value of the common ratio of the series
$\frac{8}{25}\cdot r = \frac{4\sqrt{5}}{25}$ so $r=\frac{\sqrt{5}}{2}$d. Does the series converge?

$\frac{\sqrt{5}}{2}=1.11$ $r\ge1$ no it divergess
 
Last edited:
$r>1$

Correct. :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
557
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K