Infinite Series 2: More Fun Problems!

Click For Summary

Discussion Overview

The discussion revolves around evaluating several infinite series, focusing on mathematical techniques and approaches to derive their sums. The problems include alternating series, trigonometric functions, and exponential terms, with participants exploring various methods of summation and integration.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a series involving trigonometric functions and proposes a method to evaluate it using known series expansions and identities.
  • Another participant challenges the first approach, suggesting an alternative evaluation method and correcting a perceived mistake in the initial reasoning.
  • A different participant provides a detailed derivation for a series involving sine functions, using a telescoping series approach to simplify the evaluation.
  • Another participant discusses the integration of a series and its relationship to logarithmic functions, leading to a proposed solution involving hyperbolic functions.
  • One participant reiterates the original problems, indicating that they are seeking help specifically for one of the series presented.

Areas of Agreement / Disagreement

There is no consensus on the evaluations of the series, as participants present differing methods and results. Some participants correct or challenge each other's approaches, indicating a contested discussion with multiple viewpoints.

Contextual Notes

Participants rely on various mathematical techniques, including integration, series expansion, and transformations, but the discussion does not resolve the correctness of any particular method or result.

Who May Find This Useful

Readers interested in advanced mathematical series, particularly those studying infinite series evaluation techniques, trigonometric identities, and integration methods may find this discussion beneficial.

sbhatnagar
Messages
87
Reaction score
0
More fun problems! Evaluate the following:

1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)

3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)
 
Physics news on Phys.org
4.Consider the series:$$\sum_n^{\infty}(\frac{1}{2x+1})^2n=\frac{4x^2+4x}{(2x+1)^2}$$ (1)Now, if we integrate (1), we will get:$$T=\sum_n^{\infty}\int(\frac{1}{2x+1})^{2n} dx=\sum_n^{\infty}\frac{-1}{2(2n-1)(2x+1)^{2n-1}}$$If $S$ our original sum, then:$$S=-4T=-4\int\frac{4x^2+4x}{(2x+1)^2}dx=-4(x+\frac{2}{2x+1})$$
 
Hi also sprach zarathustra! You made a mistake.
also sprach zarathustra said:
4.Consider the series:$$\sum_{n=1}^{\infty}\left(\frac{1}{2x+1}\right)^{2n}={\color{red}{\frac{1}{4x(x+1)}}} $$ (1)now, if we integrate (1), we will get:$$t=\sum_{n=1}^{\infty}\int \left(\frac{1}{2x+1} \right)^{2n} dx=\sum_{n=1}^{\infty}\frac{-1}{2(2n-1)(2x+1)^{2n-1}}$$if $s$ our original sum, then:$$s=-4t=-4 \color{red}{\int\frac{1}{4x(x+1)}dx=-\int \frac{1}{x}-\frac{1}{x+1} dx = -\ln{x}+\ln{(x+1)}=\ln{\left( \frac{x+1}{x}\right)} }$$

My approach was quite similar to yours except that I directly used the expansion of ln(1+x).

\( \displaystyle \ln{\left(1+\frac{1}{2x+1} \right)}=-\sum_{n=1}^{\infty}\frac{(-1)^n }{n(2x+1)^n} \quad (1)\)

\( \displaystyle \ln{\left(1-\frac{1}{2x+1} \right)}=-\sum_{n=1}^{\infty}\frac{1}{n(2x+1)^n} \quad (2)\)

Subtracting (2) from (1):

\( \displaystyle \ln{\left(1+\frac{1}{2x+1} \right)}-\ln{\left(1-\frac{1}{2x+1} \right)}= \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}}\)

\(\Rightarrow \displaystyle \ln{\left(\frac{x+1}{x} \right)}= \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}}\)

\(\displaystyle \Rightarrow \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} =\boxed{2 \cdot\coth^{-1}(2x+1)} \)
 
Last edited:
It doesn't look like anybody else is going to post a solution.

\( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)
[sp]
Let \( \displaystyle S=\sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)\tan^{2n+1}(k)+1}{(2n+1)^2} \)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\left[\frac{(-1)^n \tan^{2n+1}(k)}{2n+1} +\frac{1}{(2n+1)^2} \right] \)

It is known that \( \displaystyle \arctan(z)=\sum_{n=0}^{\infty}\frac{(-1)^n z^{2n+1}}{2n+1} \), so we get:

\( \displaystyle S= \arctan(\tan(k))+\sum_{n=0}^{\infty}\frac{1}{(2n+1)^2} \)

\( \displaystyle \Rightarrow S= k+\left( \frac{\pi^2}{6}-\frac{1}{4}\frac{\pi^2}{6}\right) \)

\( \displaystyle \Rightarrow S= \boxed{\displaystyle k+\frac{\pi^2}{8}} \)
[/sp]

\( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)
[sp]
Note That: \(\displaystyle \frac{\sin^4(2^n)}{4^n}=\frac{\sin^2(2^n) \cdot \sin^2(2^n)}{4^n}= \frac{\sin^2(2^n) \cdot (1-\cos^2(2^n))}{4^n}= \frac{\sin^2(2^n)}{4^n}-\frac{\sin^2(2^{n+1})}{4^{n+1}}\)

\( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} = \sum_{n=1}^{\infty} \frac{\sin^2(2^n)}{4^n}-\frac{\sin^2(2^{n+1})}{4^{n+1}}=\frac{\sin^2(2)}{4} +\sum_{n=2}^{\infty} \frac{\sin^2(2^n)}{4^n}-\sum_{n=1}^{\infty}\frac{\sin^2(2^{n+1})}{4^{n+1}} = \frac{\sin^2(2)}{4}+0=\boxed{\displaystyle \frac{\sin^2(2)}{4}}\)
[/sp]

\( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

[sp]
Let \( \displaystyle S=\sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\frac{\left\{ n - \frac{x^2}{1+x^2} \right\}^2}{n!}\cdot \left(\frac{x^{2}}{1+x^2} \right)^n\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

Substitute \( \displaystyle y=\frac{x^2}{1+x^2} \).

\( \displaystyle \begin{align*} S &=e^{-y}\sum_{n=0}^{\infty}\frac{y^n(n-y)^2}{n!} \\ &=e^{-y}\sum_{n=0}^{\infty}\frac{n^2 y^n+y^{n+2}-2n y^{n+1}}{n!} \\ &= e^{-y} \left[\sum_{n=0}^{\infty}\frac{n^2 y^n}{n!}+ \sum_{n=0}^{\infty}\frac{ y^{n+2}}{n!}-\sum_{n=0}^{\infty}\frac{2n y^{n+1}}{n!}\right] \\ &= e^{-y} \left[y\sum_{n=0}^{\infty}\frac{n y^{n-1}}{(n-1)!}+ y^2\sum_{n=0}^{\infty}\frac{ y^{n}}{n!}-2y^2\sum_{n=0}^{\infty}\frac{ y^{n-1}}{(n-1)!}\right] \\ &= e^{-y} \left[y^2\sum_{n=0}^{\infty}\frac{ y^{n-2}}{(n-2)!}+y\sum_{n=0}^{\infty}\frac{ y^{n-1}}{(n-1)!}+ y^2e^y-2y^2 e^y\right]\\ &= e^{-y}(y e^y +2y^2 e^y-2y^2 e^y) \\&= e^{-y}(y e^y) \\&= y \end{align*}\)

\( \displaystyle S=y=\boxed{\displaystyle \frac{x^2}{1+x^2}} \).
[/sp]
 
sbhatnagar said:
More fun problems! Evaluate the following:

1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)

3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)

our teacher asked to us 4. problem
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K