MHB Infinite Series 2: More Fun Problems!

Click For Summary
The discussion focuses on evaluating various infinite series problems, including sums involving trigonometric functions and exponential terms. The first problem simplifies to \( S = k + \frac{\pi^2}{8} \) after applying known series expansions. The second problem results in \( \frac{\sin^2(2)}{4} \) through a telescoping series approach. The third series evaluates to \( \frac{x^2}{1+x^2} \) by transforming the sum and using properties of exponential functions. The fourth problem leads to a logarithmic expression, ultimately yielding \( 2 \cdot \coth^{-1}(2x+1) \).
sbhatnagar
Messages
87
Reaction score
0
More fun problems! Evaluate the following:

1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)

3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)
 
Mathematics news on Phys.org
4.Consider the series:$$\sum_n^{\infty}(\frac{1}{2x+1})^2n=\frac{4x^2+4x}{(2x+1)^2}$$ (1)Now, if we integrate (1), we will get:$$T=\sum_n^{\infty}\int(\frac{1}{2x+1})^{2n} dx=\sum_n^{\infty}\frac{-1}{2(2n-1)(2x+1)^{2n-1}}$$If $S$ our original sum, then:$$S=-4T=-4\int\frac{4x^2+4x}{(2x+1)^2}dx=-4(x+\frac{2}{2x+1})$$
 
Hi also sprach zarathustra! You made a mistake.
also sprach zarathustra said:
4.Consider the series:$$\sum_{n=1}^{\infty}\left(\frac{1}{2x+1}\right)^{2n}={\color{red}{\frac{1}{4x(x+1)}}} $$ (1)now, if we integrate (1), we will get:$$t=\sum_{n=1}^{\infty}\int \left(\frac{1}{2x+1} \right)^{2n} dx=\sum_{n=1}^{\infty}\frac{-1}{2(2n-1)(2x+1)^{2n-1}}$$if $s$ our original sum, then:$$s=-4t=-4 \color{red}{\int\frac{1}{4x(x+1)}dx=-\int \frac{1}{x}-\frac{1}{x+1} dx = -\ln{x}+\ln{(x+1)}=\ln{\left( \frac{x+1}{x}\right)} }$$

My approach was quite similar to yours except that I directly used the expansion of ln(1+x).

\( \displaystyle \ln{\left(1+\frac{1}{2x+1} \right)}=-\sum_{n=1}^{\infty}\frac{(-1)^n }{n(2x+1)^n} \quad (1)\)

\( \displaystyle \ln{\left(1-\frac{1}{2x+1} \right)}=-\sum_{n=1}^{\infty}\frac{1}{n(2x+1)^n} \quad (2)\)

Subtracting (2) from (1):

\( \displaystyle \ln{\left(1+\frac{1}{2x+1} \right)}-\ln{\left(1-\frac{1}{2x+1} \right)}= \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}}\)

\(\Rightarrow \displaystyle \ln{\left(\frac{x+1}{x} \right)}= \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}}\)

\(\displaystyle \Rightarrow \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} =\boxed{2 \cdot\coth^{-1}(2x+1)} \)
 
Last edited:
It doesn't look like anybody else is going to post a solution.

\( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)
[sp]
Let \( \displaystyle S=\sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)\tan^{2n+1}(k)+1}{(2n+1)^2} \)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\left[\frac{(-1)^n \tan^{2n+1}(k)}{2n+1} +\frac{1}{(2n+1)^2} \right] \)

It is known that \( \displaystyle \arctan(z)=\sum_{n=0}^{\infty}\frac{(-1)^n z^{2n+1}}{2n+1} \), so we get:

\( \displaystyle S= \arctan(\tan(k))+\sum_{n=0}^{\infty}\frac{1}{(2n+1)^2} \)

\( \displaystyle \Rightarrow S= k+\left( \frac{\pi^2}{6}-\frac{1}{4}\frac{\pi^2}{6}\right) \)

\( \displaystyle \Rightarrow S= \boxed{\displaystyle k+\frac{\pi^2}{8}} \)
[/sp]

\( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)
[sp]
Note That: \(\displaystyle \frac{\sin^4(2^n)}{4^n}=\frac{\sin^2(2^n) \cdot \sin^2(2^n)}{4^n}= \frac{\sin^2(2^n) \cdot (1-\cos^2(2^n))}{4^n}= \frac{\sin^2(2^n)}{4^n}-\frac{\sin^2(2^{n+1})}{4^{n+1}}\)

\( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} = \sum_{n=1}^{\infty} \frac{\sin^2(2^n)}{4^n}-\frac{\sin^2(2^{n+1})}{4^{n+1}}=\frac{\sin^2(2)}{4} +\sum_{n=2}^{\infty} \frac{\sin^2(2^n)}{4^n}-\sum_{n=1}^{\infty}\frac{\sin^2(2^{n+1})}{4^{n+1}} = \frac{\sin^2(2)}{4}+0=\boxed{\displaystyle \frac{\sin^2(2)}{4}}\)
[/sp]

\( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

[sp]
Let \( \displaystyle S=\sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\frac{\left\{ n - \frac{x^2}{1+x^2} \right\}^2}{n!}\cdot \left(\frac{x^{2}}{1+x^2} \right)^n\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

Substitute \( \displaystyle y=\frac{x^2}{1+x^2} \).

\( \displaystyle \begin{align*} S &=e^{-y}\sum_{n=0}^{\infty}\frac{y^n(n-y)^2}{n!} \\ &=e^{-y}\sum_{n=0}^{\infty}\frac{n^2 y^n+y^{n+2}-2n y^{n+1}}{n!} \\ &= e^{-y} \left[\sum_{n=0}^{\infty}\frac{n^2 y^n}{n!}+ \sum_{n=0}^{\infty}\frac{ y^{n+2}}{n!}-\sum_{n=0}^{\infty}\frac{2n y^{n+1}}{n!}\right] \\ &= e^{-y} \left[y\sum_{n=0}^{\infty}\frac{n y^{n-1}}{(n-1)!}+ y^2\sum_{n=0}^{\infty}\frac{ y^{n}}{n!}-2y^2\sum_{n=0}^{\infty}\frac{ y^{n-1}}{(n-1)!}\right] \\ &= e^{-y} \left[y^2\sum_{n=0}^{\infty}\frac{ y^{n-2}}{(n-2)!}+y\sum_{n=0}^{\infty}\frac{ y^{n-1}}{(n-1)!}+ y^2e^y-2y^2 e^y\right]\\ &= e^{-y}(y e^y +2y^2 e^y-2y^2 e^y) \\&= e^{-y}(y e^y) \\&= y \end{align*}\)

\( \displaystyle S=y=\boxed{\displaystyle \frac{x^2}{1+x^2}} \).
[/sp]
 
sbhatnagar said:
More fun problems! Evaluate the following:

1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)

3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)

our teacher asked to us 4. problem
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K