MHB Infinite Series 2: More Fun Problems!

AI Thread Summary
The discussion focuses on evaluating various infinite series problems, including sums involving trigonometric functions and exponential terms. The first problem simplifies to \( S = k + \frac{\pi^2}{8} \) after applying known series expansions. The second problem results in \( \frac{\sin^2(2)}{4} \) through a telescoping series approach. The third series evaluates to \( \frac{x^2}{1+x^2} \) by transforming the sum and using properties of exponential functions. The fourth problem leads to a logarithmic expression, ultimately yielding \( 2 \cdot \coth^{-1}(2x+1) \).
sbhatnagar
Messages
87
Reaction score
0
More fun problems! Evaluate the following:

1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)

3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)
 
Mathematics news on Phys.org
4.Consider the series:$$\sum_n^{\infty}(\frac{1}{2x+1})^2n=\frac{4x^2+4x}{(2x+1)^2}$$ (1)Now, if we integrate (1), we will get:$$T=\sum_n^{\infty}\int(\frac{1}{2x+1})^{2n} dx=\sum_n^{\infty}\frac{-1}{2(2n-1)(2x+1)^{2n-1}}$$If $S$ our original sum, then:$$S=-4T=-4\int\frac{4x^2+4x}{(2x+1)^2}dx=-4(x+\frac{2}{2x+1})$$
 
Hi also sprach zarathustra! You made a mistake.
also sprach zarathustra said:
4.Consider the series:$$\sum_{n=1}^{\infty}\left(\frac{1}{2x+1}\right)^{2n}={\color{red}{\frac{1}{4x(x+1)}}} $$ (1)now, if we integrate (1), we will get:$$t=\sum_{n=1}^{\infty}\int \left(\frac{1}{2x+1} \right)^{2n} dx=\sum_{n=1}^{\infty}\frac{-1}{2(2n-1)(2x+1)^{2n-1}}$$if $s$ our original sum, then:$$s=-4t=-4 \color{red}{\int\frac{1}{4x(x+1)}dx=-\int \frac{1}{x}-\frac{1}{x+1} dx = -\ln{x}+\ln{(x+1)}=\ln{\left( \frac{x+1}{x}\right)} }$$

My approach was quite similar to yours except that I directly used the expansion of ln(1+x).

\( \displaystyle \ln{\left(1+\frac{1}{2x+1} \right)}=-\sum_{n=1}^{\infty}\frac{(-1)^n }{n(2x+1)^n} \quad (1)\)

\( \displaystyle \ln{\left(1-\frac{1}{2x+1} \right)}=-\sum_{n=1}^{\infty}\frac{1}{n(2x+1)^n} \quad (2)\)

Subtracting (2) from (1):

\( \displaystyle \ln{\left(1+\frac{1}{2x+1} \right)}-\ln{\left(1-\frac{1}{2x+1} \right)}= \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}}\)

\(\Rightarrow \displaystyle \ln{\left(\frac{x+1}{x} \right)}= \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}}\)

\(\displaystyle \Rightarrow \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} =\boxed{2 \cdot\coth^{-1}(2x+1)} \)
 
Last edited:
It doesn't look like anybody else is going to post a solution.

\( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)
[sp]
Let \( \displaystyle S=\sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)\tan^{2n+1}(k)+1}{(2n+1)^2} \)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\left[\frac{(-1)^n \tan^{2n+1}(k)}{2n+1} +\frac{1}{(2n+1)^2} \right] \)

It is known that \( \displaystyle \arctan(z)=\sum_{n=0}^{\infty}\frac{(-1)^n z^{2n+1}}{2n+1} \), so we get:

\( \displaystyle S= \arctan(\tan(k))+\sum_{n=0}^{\infty}\frac{1}{(2n+1)^2} \)

\( \displaystyle \Rightarrow S= k+\left( \frac{\pi^2}{6}-\frac{1}{4}\frac{\pi^2}{6}\right) \)

\( \displaystyle \Rightarrow S= \boxed{\displaystyle k+\frac{\pi^2}{8}} \)
[/sp]

\( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)
[sp]
Note That: \(\displaystyle \frac{\sin^4(2^n)}{4^n}=\frac{\sin^2(2^n) \cdot \sin^2(2^n)}{4^n}= \frac{\sin^2(2^n) \cdot (1-\cos^2(2^n))}{4^n}= \frac{\sin^2(2^n)}{4^n}-\frac{\sin^2(2^{n+1})}{4^{n+1}}\)

\( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} = \sum_{n=1}^{\infty} \frac{\sin^2(2^n)}{4^n}-\frac{\sin^2(2^{n+1})}{4^{n+1}}=\frac{\sin^2(2)}{4} +\sum_{n=2}^{\infty} \frac{\sin^2(2^n)}{4^n}-\sum_{n=1}^{\infty}\frac{\sin^2(2^{n+1})}{4^{n+1}} = \frac{\sin^2(2)}{4}+0=\boxed{\displaystyle \frac{\sin^2(2)}{4}}\)
[/sp]

\( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

[sp]
Let \( \displaystyle S=\sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\frac{\left\{ n - \frac{x^2}{1+x^2} \right\}^2}{n!}\cdot \left(\frac{x^{2}}{1+x^2} \right)^n\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

Substitute \( \displaystyle y=\frac{x^2}{1+x^2} \).

\( \displaystyle \begin{align*} S &=e^{-y}\sum_{n=0}^{\infty}\frac{y^n(n-y)^2}{n!} \\ &=e^{-y}\sum_{n=0}^{\infty}\frac{n^2 y^n+y^{n+2}-2n y^{n+1}}{n!} \\ &= e^{-y} \left[\sum_{n=0}^{\infty}\frac{n^2 y^n}{n!}+ \sum_{n=0}^{\infty}\frac{ y^{n+2}}{n!}-\sum_{n=0}^{\infty}\frac{2n y^{n+1}}{n!}\right] \\ &= e^{-y} \left[y\sum_{n=0}^{\infty}\frac{n y^{n-1}}{(n-1)!}+ y^2\sum_{n=0}^{\infty}\frac{ y^{n}}{n!}-2y^2\sum_{n=0}^{\infty}\frac{ y^{n-1}}{(n-1)!}\right] \\ &= e^{-y} \left[y^2\sum_{n=0}^{\infty}\frac{ y^{n-2}}{(n-2)!}+y\sum_{n=0}^{\infty}\frac{ y^{n-1}}{(n-1)!}+ y^2e^y-2y^2 e^y\right]\\ &= e^{-y}(y e^y +2y^2 e^y-2y^2 e^y) \\&= e^{-y}(y e^y) \\&= y \end{align*}\)

\( \displaystyle S=y=\boxed{\displaystyle \frac{x^2}{1+x^2}} \).
[/sp]
 
sbhatnagar said:
More fun problems! Evaluate the following:

1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)

3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)

our teacher asked to us 4. problem
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
14
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
6
Views
2K
Replies
3
Views
3K
Back
Top