MHB Infinite Sums Involving cube of Central Binomial Coefficient

Click For Summary
The discussion centers on proving two infinite sums involving the cube of the central binomial coefficient. The first sum, with alternating signs, equals a specific expression involving the Gamma function, while the second sum, without alternating signs, yields a different expression also related to the Gamma function. Participants confirm that elliptic integrals or functions are necessary for solving these sums. References to specific equations on a linked page are suggested for further assistance. The conversation emphasizes the mathematical complexity and the role of special functions in deriving the results.
Shobhit
Messages
21
Reaction score
0
Show that

$$
\begin{align*}
\sum_{n=0}^\infty \binom{2n}{n}^3 \frac{(-1)^n}{4^{3n}} &= \frac{\Gamma\left(\frac{1}{8}\right)^2\Gamma\left(\frac{3}{8}\right)^2}{2^{7/2}\pi^3} \tag{1}\\
\sum_{n=0}^\infty \binom{2n}{n}^3 \frac{1}{4^{3n}}&= \frac{\pi}{\Gamma \left(\frac{3}{4}\right)^4}\tag{2}
\end{align*}
$$

$\Gamma(z)$ denotes the Gamma Function.
 
Mathematics news on Phys.org
Am I right in assuming Elliptic integrals/functions are required for this one, Shobhit...?
 
DreamWeaver said:
Am I right in assuming Elliptic integrals/functions are required for this one, Shobhit...?

Yes, that is how they can be solved. You may have to use equations (3) and (6) on this page.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
15
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
Replies
17
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K