Inner product between velocity and acceleration is zero (parametric)

Lambda96
Messages
233
Reaction score
77
Homework Statement
I should show the following ##\bigl\langle \dot{\textbf{r}}'(t) ,\ddot{\textbf{r}}'(t) \bigr\rangle=0##
Relevant Equations
none
Hi,

I am having problems with task b

Bildschirmfoto 2023-12-02 um 15.20.27.png

I then defined the velocity vector and the acceleration vector as follows

##dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)##

and

##ddot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \frac{d}{dt}\left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)##

Then I calculated the following:

##bigl\langle \dot{\textbf{r}}'(t) ,\ddot{\textbf{r}}'(t) \bigr\rangle=\dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||^2} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right) \cdot \frac{d}{dt}\left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)= \frac{1}{||\dot{\textbf{r}}(t)||^2} \Bigl( \dot{r_1}(t) \frac{d}{dt} \dot{r_1}(t) + \dot{r_2}(t) \frac{d}{dt} \dot{r_2}(t) \Bigr)=\frac{1}{||\dot{\textbf{r}}(t)||^2} \Bigl( \dot{r_1}(t) \ddot{r_1}(t) + \dot{r_2}(t) \ddot{r_2}(t) \Bigr)##

Unfortunately, I can't get any further. The following must apply ##\bigl\langle \dot{\textbf{r}}'(t) ,\ddot{\textbf{r}}'(t) \bigr\rangle=0## so that this is the case, the expression ##\dot{r_1}(t) \ddot{r_1}(t) + \dot{r_2}(t) \ddot{r_2}(t)=0##, but why is this the case?

My derivation is probably already wrong, but I don't know how else to solve the problem.
 
Physics news on Phys.org
I don't know why my formula with Latex is not displayed correctly, does anyone know why?

In overleaf it is displayed correctly
 
In $$dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)$$ a "\" is missing in the beginning: $$\dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)$$
 
Lambda96 said:
ddotr′(t)=1||r˙(t)||ddt(r1˙(t)r2˙(t))
no. The normalized acceleration vector should be the derivative of the normalized velocity vector.
 
To add a hint to that, what you are looking for is a property of any vector of constant magnitude. Don’t get bogged down in the particular expression in terms of a normalized vector.
 
Thank you Hill and Orodruin for your help 👍👍

I have now proceeded as follows

##\bigl\langle \dot{r}', \dot{r}' \bigr\rangle=\dot{r}' \cdot \dot{r}' =1##

Now I have simply formed the derivative ##\frac{d}{dt}##

##\ddot{r}' \cdot \dot{r}' + \dot{r}' \cdot \ddot{r}' =0##
##2 \dot{r}' \cdot \ddot{r}' =0##
##\dot{r}' \cdot \ddot{r}' =0##
 
Lambda96 said:
Thank you Hill and Orodruin for your help 👍👍

I have now proceeded as follows

##\bigl\langle \dot{r}', \dot{r}' \bigr\rangle=\dot{r}' \cdot \dot{r}' =1##

Now I have simply formed the derivative ##\frac{d}{dt}##

##\ddot{r}' \cdot \dot{r}' + \dot{r}' \cdot \ddot{r}' =0##
##2 \dot{r}' \cdot \ddot{r}' =0##
##\dot{r}' \cdot \ddot{r}' =0##
Indeed.
 
Back
Top