Inner product between velocity and acceleration is zero (parametric)

Click For Summary

Homework Help Overview

The discussion revolves around the inner product between velocity and acceleration vectors in a parametric context, specifically addressing the condition under which this product equals zero. Participants are exploring the implications of this condition in relation to the properties of vectors of constant magnitude.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to define normalized velocity and acceleration vectors and calculates their inner product. They express confusion about why the inner product must equal zero and question the validity of their derivation.
  • Some participants provide feedback on formatting issues with LaTeX and clarify the correct expressions for the vectors.
  • Others suggest considering the general property of vectors with constant magnitude, hinting at a broader conceptual understanding rather than focusing solely on the specific expressions.

Discussion Status

Participants are actively engaging with the problem, offering hints and clarifications. There is a recognition of the need to understand the underlying properties of the vectors involved, and some progress has been made in deriving relationships between the vectors.

Contextual Notes

There are indications of formatting issues with mathematical expressions, which may affect clarity. The discussion also reflects a mix of attempts to derive results and conceptual exploration regarding the nature of the vectors involved.

Lambda96
Messages
233
Reaction score
77
Homework Statement
I should show the following ##\bigl\langle \dot{\textbf{r}}'(t) ,\ddot{\textbf{r}}'(t) \bigr\rangle=0##
Relevant Equations
none
Hi,

I am having problems with task b

Bildschirmfoto 2023-12-02 um 15.20.27.png

I then defined the velocity vector and the acceleration vector as follows

##dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)##

and

##ddot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \frac{d}{dt}\left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)##

Then I calculated the following:

##bigl\langle \dot{\textbf{r}}'(t) ,\ddot{\textbf{r}}'(t) \bigr\rangle=\dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||^2} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right) \cdot \frac{d}{dt}\left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)= \frac{1}{||\dot{\textbf{r}}(t)||^2} \Bigl( \dot{r_1}(t) \frac{d}{dt} \dot{r_1}(t) + \dot{r_2}(t) \frac{d}{dt} \dot{r_2}(t) \Bigr)=\frac{1}{||\dot{\textbf{r}}(t)||^2} \Bigl( \dot{r_1}(t) \ddot{r_1}(t) + \dot{r_2}(t) \ddot{r_2}(t) \Bigr)##

Unfortunately, I can't get any further. The following must apply ##\bigl\langle \dot{\textbf{r}}'(t) ,\ddot{\textbf{r}}'(t) \bigr\rangle=0## so that this is the case, the expression ##\dot{r_1}(t) \ddot{r_1}(t) + \dot{r_2}(t) \ddot{r_2}(t)=0##, but why is this the case?

My derivation is probably already wrong, but I don't know how else to solve the problem.
 
Physics news on Phys.org
I don't know why my formula with Latex is not displayed correctly, does anyone know why?

In overleaf it is displayed correctly
 
In $$dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)$$ a "\" is missing in the beginning: $$\dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)$$
 
  • Like
Likes   Reactions: Lambda96
Lambda96 said:
ddotr′(t)=1||r˙(t)||ddt(r1˙(t)r2˙(t))
no. The normalized acceleration vector should be the derivative of the normalized velocity vector.
 
  • Like
Likes   Reactions: Lambda96
To add a hint to that, what you are looking for is a property of any vector of constant magnitude. Don’t get bogged down in the particular expression in terms of a normalized vector.
 
  • Like
Likes   Reactions: Lambda96
Thank you Hill and Orodruin for your help 👍👍

I have now proceeded as follows

##\bigl\langle \dot{r}', \dot{r}' \bigr\rangle=\dot{r}' \cdot \dot{r}' =1##

Now I have simply formed the derivative ##\frac{d}{dt}##

##\ddot{r}' \cdot \dot{r}' + \dot{r}' \cdot \ddot{r}' =0##
##2 \dot{r}' \cdot \ddot{r}' =0##
##\dot{r}' \cdot \ddot{r}' =0##
 
Lambda96 said:
Thank you Hill and Orodruin for your help 👍👍

I have now proceeded as follows

##\bigl\langle \dot{r}', \dot{r}' \bigr\rangle=\dot{r}' \cdot \dot{r}' =1##

Now I have simply formed the derivative ##\frac{d}{dt}##

##\ddot{r}' \cdot \dot{r}' + \dot{r}' \cdot \ddot{r}' =0##
##2 \dot{r}' \cdot \ddot{r}' =0##
##\dot{r}' \cdot \ddot{r}' =0##
Indeed.
 
  • Like
Likes   Reactions: Lambda96

Similar threads

Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K