Yagoda
- 45
- 0
Homework Statement
Let h(x) = 0 for all x in [a,b] except for on a set of measure zero. Show that if \int_a^b h(x) \, dx exists it equals 0.We are given the hint that a subset of a set of measure zero also has measure 0.
Homework Equations
We've discussed the Lebesgue integrability criterion: A bounded function f is Riemann integrable if and only if f the points of discontinuity on [a,b] are a null set.
The Attempt at a Solution
First, is there a case where this integral would not exist? It seems like if h is not 0 only on a null set then it would be bounded and thus integrable by the criterion.
Second, I understand intuitively that the integral is 0, but I am having trouble formalizing it. If h is equal to a non-zero k only at one point then we could set the norm of the partition, ||P|| < \epsilon/k and we would have |\sigma - 0| < \epsilon. This could be modified for a finite number of non-zero points, by letting k be the max of the absolute values of the non-zero points. But what if there are countably infinite non-zero points?
I also haven't used the hint. Is this to be applied over partitions of [a,b]?