LagrangeEuler
- 711
- 22
Integral
\int^{\pi}_0\sin^3xdx=\int^{\pi}_0\sin x \sin^2xdx=\int^{\pi}_0\sin x (1-\cos^2 x)dx=\frac{4 \pi}{3}
Is it possible to write integral ##\int^{\pi}_0\sin^3xdx## in form of Beta function, or even Bessel function?
\int^{\pi}_0\sin^3xdx=\int^{\pi}_0\sin x \sin^2xdx=\int^{\pi}_0\sin x (1-\cos^2 x)dx=\frac{4 \pi}{3}
Is it possible to write integral ##\int^{\pi}_0\sin^3xdx## in form of Beta function, or even Bessel function?