MHB Integral Challenge: Evaluating $\int_0^\infty \frac{x^2+2}{x^6+1} \, dx$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle\int\limits_0^{\infty} \dfrac{x^2+2}{x^6+1} \, dx$.
 
Mathematics news on Phys.org
We have $$I= \int_0^\infty \frac{x^2+2}{x^6+1}\,\mathrm{dx}$$
Let $x \mapsto \frac{1}{x}$ then$$I= \int_0^\infty \frac{x^2+2x^4}{x^6+1}\,\mathrm{dx}$$
So that $$2I = 2\int_0^\infty \frac{1+x^2+x^4}{1+x^6}\,\mathrm{dx}$$

i.e. $$I = \int_0^\infty \frac{1+x^2+x^4}{1+x^6}\,\mathrm{dx}$$By partial fractions $$\begin{aligned} \frac{1+x^2+x^4}{1+x^6} &= \frac{1}{3}\cdot \frac{1}{1+x^2}+\frac{2}{3}\cdot \frac{x^2+1}{x^4-x^2+1} \\& = \frac{1}{3}\cdot \frac{1}{1+x^2} +\frac{2}{3}\cdot \frac{1+1/x^2}{x^2+\frac{1}{x^2}+1} \\& = \frac{1}{3}\cdot \frac{1}{1+x^2} +\frac{2}{3}\cdot \frac{1+1/x^2}{(x-1/x)^2+1}\end{aligned} $$
This along with the sub $u = x-\frac{1}{x}$ helps us finish off the integral,
$$\begin{aligned} I & = \frac{1}{3}\cdot \int_0^\infty \frac{1}{1+x^2}\, \mathrm{dx} +\frac{2}{3}\cdot \int_0^\infty\frac{1+1/x^2}{(x-1/x)^2+1}\,\mathrm{dx} \\& = \frac{1}{3}\cdot \frac{\pi}{2}+\frac{2}{3} \cdot \int_{-\infty}^{\infty} \frac{1}{u^2+1}\,\mathrm{du} \\& = \frac{\pi}{6}+\frac{2\pi}{3} \\& = \frac{5 \pi}{6}.\end{aligned} $$Therefore $$\int_0^\infty \frac{x^2+2}{x^6+1}\,\mathrm{dx}= \frac{5\pi}{6}.$$
 
Last edited:
Consider the function $\displaystyle f(z) = \frac{z^2+2}{z^6+1}$; $f$ has simple poles at $z = \pm i, \pm i^{\frac{1}{3}}, \pm i^{\frac{5}{3}}$, three of which lie in the upper half plane;
those are $z_1 = i, ~ z_2 = i^{\frac{1}{3}}, ~ z_3 = i^{\frac{5}{3}}$. The sum of the residues at these poles is given by

$\displaystyle \begin{aligned} \sum_{1 \le i \le 3} \text{res} f(z_i) & = \frac{1}{6} (-2 i - \sqrt{3})+\frac{1}{6}(-2 i +\sqrt{3})-\frac{i}{6} \\& = -\frac{5i}{6}\end{aligned} $​

Now, let $\Gamma$ be the upper half-plane semi-circle $|z| = a$ with radius $a$ in counterclockwise direction.

Since $z_1, z_2, z_3$ all lie in the upper half plane, by the residue theorem we have

$\displaystyle \begin{aligned} \oint_\Gamma f(z)\,dz & =2i \pi \sum_{1 \le i \le 3} \text{res} f(z_i) \\& = 2i \pi \cdot \frac{-5i}{6} \\& = \frac{5\pi}{3} \end{aligned}$​
But also
$\displaystyle \oint_\Gamma f(z)\,dz=\int_{-a}^{a} f(z) \,\mathrm{dz} +\int_{\text{Arc}} f(z)\,\mathrm{dz}$​

Therefore

$\displaystyle \int_{-a}^{a} f(z) \,\mathrm{dz} +\int_{\text{Arc}} f(z)\,\mathrm{dz} = \frac{5\pi}{3}$​

By taking $a \to \infty$, since

$ \displaystyle \bigg| \int_{\text{Arc}} f(z) \,\mathrm{dz} \bigg| \le \frac{a^2+2}{a^6-1}~ a \pi \longrightarrow 0$​
we have $\displaystyle \int_{\text{Arc}} f(z)\,\mathrm{dz} \to 0$ as $a \to \infty$, therefore

$\displaystyle \int_{-\infty}^{\infty}\frac{z^2+2}{z^6+1}\,\mathrm{dz} = \frac{5\pi}{3} $​

Therefore (since $f$ is an even function),

$\displaystyle \int_{0}^{\infty}\frac{z^2+2}{z^6+1}\,\mathrm{dz} = \frac{5\pi}{6}. $​
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K