MHB Integral closure in finite extension fields

Click For Summary
The discussion centers on determining the integral closure of the polynomial ring $R = K[x]$ in the field $L = K(x)[y]$, where $y$ satisfies $y^3 = 1 + x^2$. A theorem is referenced, stating that if an element $\alpha$ in $L$ is algebraic over the fraction field of $R$, its minimal polynomial's coefficients lie in the integral closure of $R$. The proposed strategy involves expressing $\alpha$ in a general form, computing its minimal polynomial over $K(X)$, and analyzing its integrality over $K[X]$. The conclusion drawn is that the integral closure of $K[x]$ in $L$ is likely $K[X][Y]$.
pantboio
Messages
43
Reaction score
0
Let $K=\mathbb{Q}[\omega]$ where $\omega^2+\omega+1=0$ and let $R$ be the polynomial ring $K[x]$. Let $L$ be the field $K(x)[y]$ where $y$ satisfies $y^3=1+x^2$.Which is the integral closure of $R$ in $L$, why?
 
Physics news on Phys.org
Re: integral closure in finite extension fields

There is a theorem which says: let $R$ be a domain, le $K$ be the fraction field of $R$, and finally let $L$ be a finite extension ok $K$. Take an element $\alpha$ in $L$. Then $\alpha$ is algebraic over $K$ and call $m_{\alpha}(X)$ its minimal polynomial over $K$. Then the coefficients of $m_{\alpha}(X)$ lie in the integral closure of $R$ in $K$, hence in $R$ if we assume $R$ to be integrally closed.

My strategy to solve the problem i posted was:
1) take an element $\alpha$ in $L$ and express it in the most general form you can;
2) compute the minimal polynomial of $\alpha$ over $K(X)$.
3) now suppose $\alpha$ integral over $K[X]$, hence the coefficients of its minimal polynomial lie in the integral closure of $K[X]$ in $K(X)$, which is $K[X]$ itself.
4) deduce from 3) that the writing for $\alpha$ in 1) implies $\alpha\in K[X][Y]$ (my guess is that the integral closure of $K[x]$ in $L$ is $K[X][Y]$...)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
907
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K