I Integral involving exponential

Click For Summary
The discussion centers on the definite integral F(λ) = ∫₀^∞ e^(-x)/(1 + λx) dx, questioning the existence of a closed-form solution. It is established that the integral converges for λ > 0 and approaches 1 as λ approaches 0, but does not exhibit analyticity in λ due to nonconvergent power series attempts. The integral can be expressed in terms of the incomplete gamma function, specifically F(λ) = (e^(1/λ)/λ) Γ(0, 1/λ), after appropriate substitutions. Participants emphasize the utility of special functions and established integral tables for solving such problems. The conversation highlights the importance of familiarity with mathematical resources for tackling complex integrals.
stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
Just a quick question:

Does anybody know if there is a closed-form solution to this rather simple-looking definite integral?

##F(\lambda) = \int_0^{\infty} \dfrac{e^{-x}}{1 + \lambda x} dx##

If ##\lambda > 0##, it definitely converges. It has a limit of 1 as ##\lambda \rightarrow 0##. But it doesn't seem to be analytic in ##\lambda##, since if you try to do a power series in ##\lambda##, you get a nonconvergent sequence:

##F(\lambda) = \sum_{j=0}^\infty (-1)^j \lambda^j (j!)##
 
Physics news on Phys.org
\frac{1}{1+\lambda x}=\sum_{j=0}^\infty (-\lambda x )^j
only if ##|\lambda x| < 1##?
 
Last edited:
anuttarasammyak said:
\frac{1}{1+\lambda x}=\sum_{j=0}^\infty (-\lambda x )^j
only if ##|\lambda x| < 1## ?

Yes, the summation doesn't converge if ##|\lambda x| > 1##. It's even worse if you put the factorials in:

##\sum_{j=0}^\infty (-\lambda)^j j!##

doesn't converge for any nonzero value of ##\lambda##.
 
stevendaryl said:
Just a quick question:

Does anybody know if there is a closed-form solution to this rather simple-looking definite integral?

##F(\lambda) = \int_0^{\infty} \dfrac{e^{-x}}{1 + \lambda x} dx##

If ##\lambda > 0##, it definitely converges. It has a limit of 1 as ##\lambda \rightarrow 0##. But it doesn't seem to be analytic in ##\lambda##, since if you try to do a power series in ##\lambda##, you get a nonconvergent sequence:

##F(\lambda) = \sum_{j=0}^\infty (-1)^j \lambda^j (j!)##
It looks like the Gamma function. See 1.1 / 1.8 / 2.3 in https://de.wikibooks.org/wiki/Formelsammlung_Mathematik:_Bestimmte_Integrale:_Form_R(x,exp)
or the integration trick used here:
https://www.physicsforums.com/threads/micromass-big-integral-challenge.867904/page-2#post-5451293
 
If ##\lambda <0## then the integral is not defined, so you generically should not expect to get a power series around 0 that works.
 
  • Like
Likes stevendaryl
Setting ##t \equiv 1/\lambda + x##, you get
$$
F(\lambda) = \frac{e^{1/\lambda}}{\lambda} \int_{1/\lambda}^{\infty} \frac{e^{-t}}{t} dt = \frac{e^{1/\lambda}}{\lambda} \Gamma(0, 1/\lambda)
$$
where ##\Gamma(s, x)## is the incomplete gamma function.
 
  • Like
  • Wow
Likes romsofia, dextercioby, Infrared and 3 others
DrClaude said:
Setting ##t \equiv 1/\lambda + x##, you get
$$
F(\lambda) = \frac{e^{1/\lambda}}{\lambda} \int_{1/\lambda}^{\infty} \frac{e^{-t}}{t} dt = \frac{e^{1/\lambda}}{\lambda} \Gamma(0, 1/\lambda)
$$
where ##\Gamma(s, x)## is the incomplete gamma function.
If you don't mind sharing, how did you notice this? Was it because you saw a similar integral, or was it a guess/intuition?
 
romsofia said:
If you don't mind sharing, how did you notice this? Was it because you saw a similar integral, or was it a guess/intuition?
I started from the solution Mathematica gave to the integral and then played around until I could understand how to get such a solution.
 
  • Like
Likes romsofia
romsofia said:
If you don't mind sharing, how did you notice this? Was it because you saw a similar integral, or was it a guess/intuition?

Using "special functions" is a way of cheating, since all the theory of integrals in terms of them is already embedded either in a book like Abramowitz-Stegun/Gradshteyn-Ryzhik, or in a computer software to which G-S has already been fed + it was taught various substitution techniques.

Therefore, when you see the integral and in the absence of a computer software you can feed the problem to,
you can try to devise certain substitutions to bring it to a form already present in G-S.

Here is how it's done.
https://en.wikipedia.org/wiki/Exponential_integral
In order to bring it to the https://en.wikipedia.org/wiki/Exponential_integral, you need to first substitute

$$ 1 + \lambda x = t$$

Then the integral is just a numerical factor times ##\text{Ei}\left(-\frac{1}{\lambda}\right)##
 
  • #10
dextercioby said:
Using "special functions" is a way of cheating, since all the theory of integrals in terms of them is already embedded either in a book like Abramowitz-Stegun/Gradshteyn-Ryzhik, or in a computer software to which G-S has already been fed + it was taught various substitution techniques.

Therefore, when you see the integral and in the absence of a computer software you can feed the problem to,
you can try to devise certain substitutions to bring it to a form already present in G-S.

Here is how it's done.
https://en.wikipedia.org/wiki/Exponential_integral
In order to bring it to the https://en.wikipedia.org/wiki/Exponential_integral, you need to first substitute

$$ 1 + \lambda x = t$$

Then the integral is just a numerical factor times ##\text{Ei}\left(-\frac{1}{\lambda}\right)##
I need to get more comfortable using those books, I remember my physics teacher in high school showing me that one with the red cover. But thanks for the insight!