Challenge Micromass' big integral challenge

Click For Summary
The discussion centers around a challenge involving the evaluation of ten integrals, with participants required to provide detailed solutions alongside their answers. Several integrals have been successfully solved, including integrals involving logarithmic and trigonometric functions, with solutions verified by others in the thread. Participants are encouraged to use various mathematical methods and can reference calculus textbooks but are prohibited from directly searching for the integrals online. The thread highlights the collaborative nature of mathematical problem-solving, with users sharing their approaches and confirming the correctness of each other's solutions. This challenge fosters engagement and learning within the mathematical community.
  • #51
OK, I'll post it soon. I just thought some people were still thinking about it.
 
  • Like
Likes member 587159
Physics news on Phys.org
  • #52
I admit I gave up after many attempts on something like ##\int q(x)^{-1} \arctan{x} dx## with ##q(x) = (3x^2+1)\sqrt{2x^2-1}## or similar. (Don't count on it, it's just out of memory.)
 
Last edited:
  • #53
Alright, here is the first part of the solution to ##I = \int_0^{\pi/2} \cos^{-1}\left(\frac{\cos(x)}{1+2\cos(x)}\right)dx##. I will give people the chance to complete the solution. I will post the second half on monday.

Fist, notice that the double-angle formula from trigonometry say that for any ##\theta##, we have ##\cos(2\theta) = 2\cos^2(\theta)-1##. Call this ##(*)##.

If we write ##u=\cos(\theta)## - and so ##\theta = \cos^{-1}(u)## - then ##(*)## says that ##\cos(2\theta) = 2u^2 - 1##, from which immediately follows that
\cos^{-1}(2 u ^2 - 1) = \cos^{-1}(\cos(2\theta)) = 2\theta = 2\cos^{-1}(u)

So, since ##u## is simply an arbitrary variable, we can write

\cos^{-1}(2\theta^2 - 1) = 2\cos^{-1}(\theta)

Next, we write ##\alpha = 2\theta^2 - 1##, which means that ##\theta = \sqrt{\frac{1+\alpha}{2}}##. It follows that

\cos^{-1}(\alpha) = 2\cos^{-1}\left(\sqrt{\frac{1+\alpha}{2}}\right)

We write ##\alpha = \frac{\cos(x)}{1+2\cos(x)}##, to get

\cos^{-1}\left(\frac{\cos(x)}{1 + 2\cos(x)}\right) = 2\cos^{-1}\left(\sqrt{ \frac{1 + \frac{\cos(x)}{1 + 2\cos(x)}}{2}}\right) = 2\cos^{-1}\left(\sqrt{\frac{1 + 3\cos(x)}{2 + 4\cos(x)}}\right).

Applying the Pythagorean theorem to a right triangle with acute angle whose cosine is ##\sqrt{\frac{1 + 3\cos(x)}{2 + 4\cos(x)}}##, yu'll see that the tangent of that same angle is ##\sqrt{\frac{1 + \cos(x)}{1 + 3\cos(x)}}##. Thus

\cos^{-1}\left(\frac{\cos(x)}{1 + 2\cos(x)}\right) = 2\tan^{-1}\left(\sqrt{\frac{1+\cos(x)}{1 + 3\cos(x)}}\right)

And so we have

I = 2\int_0^{\pi/2} \tan^{-1}\left(\sqrt{\frac{1 + \cos(x)}{1 + 3\cos(x)}}\right)dx

Make the chance of variable ##x = 2y##, so ##dx = 2dy##, to get

I = 4\int_0^{\pi/4} \tan^{-1}\left(\sqrt{\frac{1 + \cos(2y)}{1 + 3 \cos(2y)}}\right)dy

Using ##(*)## again, we can find

\sqrt{\frac{1 + \cos(2y)}{1 + 3\cos(2y)}} = \frac{\cos(y)}{\sqrt{2 - 3\sin^2(y)}}

And so

I = 4\int_0^{\pi/4} \tan^{-1}\left(\frac{\cos(y)}{\sqrt{2 - 3\sin^2(y)}} \right)dy

Notice that

\int_0^1 \frac{1}{1 + \left(\frac{\cos^2(y)}{2 - 3\sin^2(y)}\right)t^2}dt

is of the form

\int_0^1 \frac{1}{1 + b^2t^2}dt = \frac{1}{b^2}\int_0^1 \frac{1}{\frac{1}{b^2} + t^2}dt = \frac{1}{b^2} [b\tan^{-1}(bt)]_0^1 = \frac{1}{b} \tan^{-1}(b),
where ## b = \frac{\cos(y)}{\sqrt{2 - 3\sin^2(y)}}##.
Thus

\int_0^1 \frac{1}{1 + \left(\frac{\cos^2(y)}{2 - 3\sin^2(y)}\right)t^2 } dt = \frac{\sqrt{2 - 3\sin^2(y)}}{\cos(y)} = \tan^{-1}\left(\frac{\cos(y)}{\sqrt{2 - 3\sin^2(y)}}\right)

That is,

<br /> \begin{eqnarray*}<br /> I &amp; = &amp; 4\int_0^{\pi/4} \frac{\cos(y)}{\sqrt{ 2 - 3\sin^2(y)}} \left(\int_0^1 \frac{1}{1 + \left(\frac{\cos^2(y)}{2 - 3\sin^2(y)}\right)t^2}\right)dy\\<br /> &amp; = &amp; \int_0^{\pi/4} \int_0^1 \frac{4\cos(y)(2 - 3\sin^2(y))}{\sqrt{2 - 3\sin^2(y)}(2 - 3\sin^2(y) + t^2\cos^2(y))}dt dy\\<br /> &amp; = &amp; \int_0^{\pi/4} \int_0^1 \frac{4\cos(y)\sqrt{ 2 - 3\sin^2(y)}}{2 - 3\sin^2(y) + t^2 - t^2\sin^2(y)}dt dy\\<br /> &amp; = &amp; \int_0^{\pi/4} \int_0^1 \frac{4\cos(y) \sqrt{2 - 3\sin^2(y)} }{(t^2 + 2) - (t^2 + 3)\sin^2(y)}dt dy<br /> \end{eqnarray*}<br />

Next, we change the variables ##\sin(y) = \sqrt{\frac{2}{3}} \sin(w)##, and so ##dy = \sqrt{\frac{2}{3}} \frac{\cos(w)}{\cos(y)}dw##. We have ##w=0## when ##y=0##, and when ##y = \pi/4##, we have ##\sin(\pi/4) = \frac{1}{\sqrt{2}}##. And so ##\sin(w) = \sqrt{\frac{3}{2}}\frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2}##, which says ##w = \pi/3##. So

<br /> \begin{eqnarray*}<br /> I<br /> &amp; = &amp; \int_0^{\pi/3} \int_0^1 \frac{4\cos(y) \sqrt{2 - 3\frac{2}{3}\sin^2(w)}}{(t^2 + 2) - (t^2 + 3) \frac{2}{3} \sin^2(w)}dt \frac{\cos(w)}{\cos(y)} dw \sqrt{\frac{2}{3}}\\<br /> &amp; = &amp; \int_0^{\pi/3} \int_0^1 \frac{4 \sqrt{2 - 2( 1 - \cos^2(w))}}{(t^2 + 2) - (t^2 + 3) \frac{2}{3} ( 1 - \cos^2(w))} dt \cos(w) dw \sqrt{\frac{2}{3}}\\<br /> &amp; = &amp; \int_0^{\pi/3} \int_0^1\frac{4 \sqrt{2} \cos(w) \sqrt{2} \cos(w) }{(t^2 + 2) - (t^2 + 3) \frac{2}{3} ( 1 - \cos^2(w)} dt \frac{1}{\sqrt{3}} dw\\<br /> &amp; = &amp; \int_0^{\pi/3} \int_0^1 \frac{8\sqrt{3}\cos^2(w)}{t^2 + (2t^2 + 6)cos^2(w)} dt dw<br /> \end{eqnarray*}<br />

Our next step is another change of variable to ##s = \tan(w)##. Thus as ##\tan(w) = \frac{\sin(w)}{\cos(w)}##, we have

\frac{ds}{dw} = \frac{1}{\cos^2(w)}

and so ##dw = \cos^2(w) ds##. Since

1 + s^2 = 1 + \tan^2(w) = \frac{1}{\cos^2(w)}

we have

\frac{1}{1 + s^2} = \cos^2(w)

and so

dw = \frac{ds}{ 1+ s^2}

Therefore, since ##s=0## when ##w=0## and ##s= \sqrt{3}##, when ##w = \pi/3##, we have

<br /> \begin{eqnarray*}<br /> I<br /> &amp; = &amp; \int_0^{\sqrt{3}} \int_0^1 \frac{8\sqrt{3} \frac{1}{1 + s^2}}{t^2 + (2t^2 + 6) \frac{1}{1 + s^2}} dt \frac{ds}{1 + s^2}\\<br /> &amp; = &amp; \int_0^{\sqrt{3}} \int_0^1 \frac{8\sqrt{3}}{t^2(1 + s^2)^2 + (2t^2 + 6)(1 + s^2)} dt ds\\<br /> &amp; = &amp; \int_0^{\sqrt{3}} \int_0^1 \frac{8\sqrt{3}}{(1 + s^2)(t^2s^2 + 3t^2 + 6)} dt ds<br /> \end{eqnarray*}<br />

Let's make a partial fraction expansion:

\frac{1}{(1+ s^2)(t^2 s^2 + 3t^2 + 6)} = \frac{A}{1+s^2} + \frac{B}{t^2 s^2 + 3t^2 + 6}
where it is easy to confirm that
A = \frac{1}{2t^2 + 6}~~\text{and}~~ B = - \frac{t^2}{2t^2 + 6}

and so

<br /> \begin{eqnarray*}<br /> I<br /> &amp; = &amp; \int_0^{\sqrt{3}} \int_0^1 8\sqrt{3} \left(\frac{\frac{1}{2t^2 + 6}}{1 + s^2} - \frac{\frac{t^2}{2t^2 + 6}}{t^2 + 3t^2 + 6}\right)dt ds\\<br /> &amp; = &amp; \int_0^1 \frac{4\sqrt{3}}{t^2 + 3}\left(\int_0^{\sqrt{3}} \frac{ds}{1+s^2} - \int_0^{\sqrt{3}} \frac{ds}{s^2 + 3 + \frac{6}{t^2}}\right) dt<br /> \end{eqnarray*}<br />

The first inner intergral on the right is easy:

[\tan^{-1}(s)]_0^{\sqrt{3}} = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}
The second inner integral is almost as easy and equals

<br /> \begin{eqnarray*}<br /> \int_0^{\sqrt{3}} \frac{ds}{s^2 + \left(\sqrt{3 + \frac{6}{t^2}}\right)^2}<br /> &amp; = &amp; \frac{1}{\sqrt{3 + \frac{6}{t^2}}} \left. \left(\tan^{-1}\left(\frac{s}{\sqrt{3 + \frac{6}{t^2}}}\right)\right)\right|_0^{\sqrt{3}}\\<br /> &amp; = &amp; \frac{t}{\sqrt{3}\sqrt{t^2 + 2}} \tan^{-1}\left.\left(\frac{st}{\sqrt{3}\sqrt{t^2 + 2}}\right)\right|_0^{\sqrt{3}}\\<br /> &amp; = &amp; \frac{t}{\sqrt{3}\sqrt{t^2 + 2}} \tan^{-1}\left(\frac{t}{\sqrt{t^2 + 2}}\right)<br /> \end{eqnarray*}<br />

Thus

<br /> \begin{eqnarray*}<br /> I<br /> &amp; = &amp; \int_0^1 \frac{4\sqrt{3}}{t^2 + 3}\left(\frac{\pi}{3} - \frac{t}{\sqrt{3}\sqrt{t^2 + 2}} \tan^{-1}\left(\frac{t}{\sqrt{t^2 + 2}}\right)\right)dt\\<br /> &amp; = &amp; \frac{4\sqrt{3}\pi}{3}\int_0^1 \frac{dt}{t^2 + (\sqrt{3})^2} - 4\int_0^1 \frac{t}{(t^2 + 3)\sqrt{t^2 + 2}} \tan^{-1}\left(\frac{t}{\sqrt{t^2 + 2}}\right) dt\\<br /> &amp; = &amp; \frac{4\sqrt{3}\pi}{3}\left.\left(\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right)\right)\right|_0^1 - 4\int_0^1 \frac{t}{(t^2 + 3)\sqrt{t^2 + 2}} \tan^{-1}\left(\frac{t}{\sqrt{t^2 + 2}}\right) dt<br /> \end{eqnarray*}<br />

Since

\frac{4\sqrt{3}\pi}{3}\left.\left(\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right)\right)\right|_0^1 = \frac{4\pi}{3}\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{2\pi^2}{9}

we have

I = \frac{2\pi^2}{9} - 4\int_0^1 \frac{t}{(t^2 + 3)\sqrt{t^2 + 2}} \tan^{-1}\left(\frac{t}{\sqrt{t^2 + 2}}\right) dt

We can do this by parts, let

u = \tan^{-1}\left(\frac{t}{\sqrt{t^2 + 2}}\right)

and

dv = \frac{t}{(t^2 + 3)\sqrt{t^2 + 2}} dt

Then

\frac{du}{dt} = \frac{1}{(t^2 + 1)\sqrt{t^2 + 2}}

and you can verify that

v = \tan^{-1}(\sqrt{t^2 + 2})

by simply sifferentiating this ##v## and observing we get the above ##dv## back. So, plugging all this into the integration by parts formula, we have

<br /> \begin{eqnarray*}<br /> I<br /> &amp; = &amp; \frac{2\pi^2}{9} - 4\left(\left.\left(\tan^{-1}\left(\frac{1}{\sqrt{t^2 + 2}}\right)\tan^{-1}(\sqrt{t^2 + 2})\right)\right|_0^1 - \int_0^1 \frac{\tan^{-1}(\sqrt{t^2 + 2})}{(t^2 + 1)\sqrt{t^2 + 2}}dt\right)\\<br /> &amp; = &amp; \frac{2\pi^2}{9} - 4\left(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)\tan^{-1}(\sqrt{3}) - \int_0^1 \frac{\tan^{-1}(\sqrt{t^2 + 2})}{(t^2 + 1)\sqrt{t^2 + 2}}dt\right)\\<br /> &amp; = &amp; \frac{2\pi^2}{9} - 4\left(\frac{\pi}{6}\frac{\pi}{3} - \int_0^1 \frac{\tan^{-1}(\sqrt{t^2 + 2})}{(t^2 + 1)\sqrt{t^2 + 2}}dt\right)\\<br /> &amp; = &amp; \frac{2\pi^2}{9} - \frac{2\pi^2}{9} + 4\int_0^1 \frac{\tan^{-1}(\sqrt{t^2 + 2})}{(t^2 + 1)\sqrt{t^2 + 2}}dt<br /> \end{eqnarray*}<br />

And so

I = 4\int_0^1 \frac{\tan^{-1}(\sqrt{t^2 + 2})}{(t^2 + 1)\sqrt{t^2 + 2}}dt

This is the first part. I leave the second part up to you. I will post the solution monday unless somebody doesn't want me to
 
  • Like
Likes StudentOfScience and ShayanJ
  • #54
How was anyone supposed to find that? :P
 
  • #55
Alright, here is the second part. We let

I(u) = \int_0^1 \frac{\tan^{-1}\left(u\sqrt{2 +x^2}\right)}{(1+x^2)\sqrt{2 + x^2}}dx

Note that we wish to find ##I(1)##. Notice that if ##u\rightarrow +\infty##, then the argument for the inverse tangent also goes to ##+\infty## for all ##x>0##. So since ##\tan^{-1}(+\infty) = \frac{\pi}{2}##, we have

I(+\infty) = \frac{\pi}{2} \int_0^1 \frac{dx}{(1+x^2)\sqrt{2+x^2}}

This integral is easy to do if you remember the following standard formula:

\frac{d}{dx} \tan^{-1}(f(x)) = \frac{1}{1+f^2(x)}\frac{df}{dx}

We can use this formula to calculate

\frac{d}{dx} \tan^{-1}\left(\frac{x}{\sqrt{2+x^2}}\right) = \frac{1}{(1+x^2)\sqrt{2 + x^2}}

Thus

\begin{eqnarray*}<br /> I(+\infty) <br /> &amp; = &amp; \frac{\pi}{2}\int_0^1 \frac{d}{dx} \left(\frac{x}{\sqrt{2+x^2}}\right)dx\\<br /> &amp; = &amp; \frac{\pi}{2} \left.\left(\tan^{-1}\left(\frac{x}{\sqrt{2+x^2}}\right)\right)\right|_0^1\\<br /> &amp; = &amp; \frac{\pi}{2}\left(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \tan^{-1}(0)\right)\\<br /> &amp; = &amp; \frac{\pi^2}{12}<br /> \end{eqnarray*}

Now we differentiate ##I(u)## with respect to ##u##. We get

\frac{dI}{du} = \int_0^1\frac{dx}{(1+x^2)(1 + 2u^2 + u^2 x^2)}

With a partial fraction expansion, this becomes

<br /> \begin{eqnarray*}<br /> \frac{dI}{du} <br /> &amp; = &amp; \int_0^1 \frac{1}{1+u^2} \left(\frac{1}{1+x^2} - \frac{u^2}{1 + 2u^2 + u^2 x^2}\right)dx\\<br /> &amp; = &amp; \frac{1}{1+u^2}\left(\int_0^1 \frac{dx}{1+x^2} - \int_0^1 \frac{dx}{\frac{1 + 2u^2}{u^2} + x^2}\right)<br /> \end{eqnarray*}

These last two integrals are of the form

\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right)

And so, doing the integrals, we have

<br /> \begin{eqnarray*}<br /> \frac{dI}{du}<br /> &amp; = &amp; \frac{1}{1+u^2} \left. \left( \tan^{-1}(x) - \frac{u}{\sqrt{1 + 2u^2}} \tan^{-1}\left(\frac{xu}{\sqrt{1 + 2u^2}}\right) \right) \right|_0^1\\<br /> &amp; = &amp; \frac{1}{1+u^2}\left(\frac{\pi}{4} - \frac{u}{\sqrt{1 + 2u^2}}\tan^{-1} \left(\frac{u}{\sqrt{1 + 2u^2}}\right)\right)<br /> \end{eqnarray*}

Now we integrate both sides from ##1## to ##+\infty## with respect to ##u##. On the left, we get:

\int_1^{+\infty} \frac{dI}{du} du = \int_1^{+\infty} dI = I(+\infty) - I(1)

On the right, we get

\frac{\pi}{4}\int_1^{+\infty} \frac{du}{1+u^2} - \int_1^{+\infty} \frac{u}{(1+u^2)\sqrt{1 + 2u^2}} \tan^{-1}\left(\frac{u}{\sqrt{1 + 2u^2}}\right)du

The first integral is easy:

\frac{\pi}{4} \int_1^{+\infty} \frac{du}{1+u^2} = \frac{\pi}{4} \left(\tan^{-1}(+\infty) - \tan^{-1}(1)\right) = \frac{\pi}{4}\left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \frac{\pi^2}{16}

Thus

I(+\infty) - I(1) = \frac{\pi^2}{16} - \int_1^{+\infty} \frac{u}{(1+u^2)\sqrt{1 + 2u^2}}\tan^{-1} \left(\frac{u}{\sqrt{1 + 2u^2}}\right)du

In this final integral, we change variable ##t = \frac{1}{u}##, and so ##du = - \frac{1}{t^2} dt## as follows:

<br /> \begin{eqnarray*}<br /> &amp; &amp; \int_1^{+\infty} \frac{u}{(1+u^2)\sqrt{1 + 2u^2}} \tan^{-1}\left(\frac{u}{\sqrt{1 + 2u^2}}\right) du\\<br /> &amp; = &amp; \int_1^0 \frac{\frac{1}{t}}{\left(1 + \frac{1}{t^2}\right)\sqrt{1 + \frac{2}{t^2}}} \tan^{-1}\left(\frac{\frac{1}{t}}{\sqrt{1 + \frac{2}{t^2}}}\right) \left(-\frac{1}{t^2} dt\right)\\<br /> &amp; = &amp; \int_0^1 \frac{\frac{1}{t}}{(t^2 + 1)\frac{\sqrt{t^2 + 2}}{t}} \tan^{-1} \left(\frac{\frac{1}{t}}{\frac{\sqrt{t^2 + 2}}{t}}\right)dt\\<br /> &amp; = &amp; \int_0^1 \frac{1}{(t^2 + 1)\sqrt{t^2 + 2}} \tan^{-1}\left(\frac{1}{\sqrt{t^2 + 2}}\right)dt<br /> \end{eqnarray*}<br />

Now recall the identity ##\tan^{-1}(s) + \tan^{-1}\left(\frac{1}{s}\right) = \frac{\pi}{2}##, which becomes instantly obvious if you draw a right triangle with perpendicular sides of lengths ##1## and ##s## and remember that the two acute angles add to ##\pi/2##. This says

\tan^{-1}\left(\frac{1}{\sqrt{t^2 + 2}}\right) = \frac{\pi}{2} - \tan^{-1}\left(\sqrt{t^2 + 2}\right)

And so we can write

<br /> \begin{eqnarray*}<br /> &amp; &amp; \int_0^1\frac{1}{(t^2 + 1)\sqrt{t^2 + 2}}\tan^{-1}\left(\frac{1}{\sqrt{t^2 + 2}}\right)dt\\<br /> &amp; = &amp; \frac{\pi}{2}\int_0^1 \frac{dt}{(t^2 + 1)\sqrt{t^2 + 2}} -\int_0^1 \frac{\tan^{-1}\left(\sqrt{t^2 + 2}\right)}{(t^2 + 1)\sqrt{t^2 + 2}}dt<br /> \end{eqnarray*}

That is, we have

I(+\infty) - I(1) = \frac{\pi^2}{16} - \frac{\pi}{2}\int_0^1\frac{dt}{(t^2 + 1)\sqrt{t^2 + 2}} + \int_0^1 \frac{\tan^{-1}\left(\sqrt{t^2 + 2}\right)}{(t^2 + 1)\sqrt{t^2 + 2}}dt

The first integral is just ##I(+\infty)## and the last integral is just ##I(1)##. That is, we have

I(+\infty) - I(1) = \frac{\pi^2}{16} - I(+\infty) + I(1)

and so

2 I (+\infty) - \frac{\pi^2}{16} = 2I(1)

and at last

I(1) = I(+\infty) - \frac{\pi^2}{32} = \frac{\pi^2}{12} - \frac{\pi^2}{32} = \frac{5\pi^2}{96}

Thus our original integral now becomes

\int_0^{\pi/2} \cos^{-1}\left(\frac{\cos(x)}{1 + 2\cos(x)}\right)dx = 4\int_0^1 \frac{\tan^{-1}\left(\sqrt{t^2 + 2}\right)}{(t^2 + 1)\sqrt{t^2 + 2}}dt = \frac{5\pi^2}{24}

This is very close to ##\frac{\pi^2}{4}##, which two people got as answer. This is very interesting!
 
  • Like
Likes StudentOfScience and ShayanJ
  • #56
Last edited by a moderator:
  • #57
That was the longest integration I've ever seen! To Hardy::bow:
 
Last edited:
  • Like
Likes Delta31415 and fresh_42
  • #58
I would've never thought of that solution. Thank you for posting the solution before I went crazy trying to figure out the integral with elementary substitution techniques. If all the integrals in that book are this involved, I'm very interested in the book.
 

Similar threads

2
Replies
64
Views
15K
2
Replies
69
Views
8K
3
Replies
114
Views
11K
Replies
35
Views
6K
2
Replies
60
Views
12K
2
Replies
93
Views
15K
Replies
25
Views
4K
2
Replies
52
Views
12K