Integral of a portion of spacetime

  • Context: MHB 
  • Thread starter Thread starter Sandra Conor
  • Start date Start date
  • Tags Tags
    Integral Spacetime
Click For Summary

Discussion Overview

The discussion revolves around evaluating a specific integral related to spacetime geometry. Participants explore different approaches to simplify and compute the integral, which involves transformations and substitutions, while also considering the implications of the integral's context in spacetime.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents an integral and seeks assistance in evaluating it, specifically in the context of spacetime.
  • Another participant suggests switching to polar coordinates to simplify the integral, providing a transformation that leads to a new form of the integral.
  • A third participant expresses interest in evaluating a related integral in spacetime, proposing a substitution to simplify the expression further.
  • Some participants note that the final answer to the integral depends on the shape of the region $\Sigma$, questioning whether it can be assumed to be a disk with a fixed radius.
  • There is a query regarding the relevance of spacetime in the context of the integral, with one participant asking for clarification on the dimensions involved.
  • Another participant mentions attempting to use the completing the square method to solve the integral but encounters difficulties.
  • One participant expresses uncertainty about the success of their approach and mentions the potential use of software tools like Mathematica or Maple for assistance.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the evaluation of the integral, as there are multiple approaches and some uncertainty regarding the implications of the spacetime context. The discussion remains unresolved with competing views on how to proceed.

Contextual Notes

Participants have not defined all assumptions regarding the shape and properties of the region $\Sigma$, which may affect the evaluation of the integral. There is also a lack of clarity on how the spacetime context influences the integral's evaluation.

Sandra Conor
Messages
9
Reaction score
0
Hello, I have difficulty in evaluating this integral. Can anyone assists?

$\frac{1}{a_0^2}\int_\Sigma\frac{dy'dz'}{\bigg(y'^2+z'^2+\tfrac{1}{(2a_0)^2}\bigg)^2}$
 
Physics news on Phys.org
Symbian said:
Hello, I have difficulty in evaluating this integral. Can anyone assists?

$\frac{1}{a_0^2}\int_\Sigma\frac{dy'dz'}{\bigg(y'^2+z'^2+\tfrac{1}{(2a_0)^2}\bigg)^2}$

Hello Symbian and welcome to MHB! ;)

Switch to polar coordinates:
$$\frac{1}{a_0^2}\int_\Sigma\frac{dy'dz'}{\bigg(y'^2+z'^2+\tfrac{1}{(2a_0)^2}\bigg)^2} =
\frac{1}{a_0^2}\int_\Sigma\frac{rd\phi dr}{\bigg(r^2+\tfrac{1}{(2a_0)^2}\bigg)^2}$$

On a disk with radius $R$ this becomes:
$$\frac{1}{a_0^2}\int_\Sigma\frac{rd\phi dr}{\bigg(r^2+\tfrac{1}{(2a_0)^2}\bigg)^2} =
\frac{1}{a_0^2}\int_0^{2\pi}d\phi \int_0^R \frac{r dr}{\bigg(r^2+\tfrac{1}{(2a_0)^2}\bigg)^2} =
\frac{1}{a_0^2}\cdot 2\pi\cdot \left[-\frac{1}{2\bigg(r^2+\tfrac{1}{(2a_0)^2}\bigg)}\right]_0^R
$$
 
Thank you, Klaas for your assistance.

I would like to seek your view. Initially, I want to evaluate this integral in spacetime?

$$\int_{\Sigma} \frac{dydz}{[a_{o}(y^{2}+z^{2})+2f_{o}y+2g_{o}z+c_{o}]^{2}}$$ where $$a_{o}c_{o}-f_{o}^{2}-g_{0}^{2}=\frac{1}{4}.$$

My way is to define $y':=y+\frac{f_0}{a_0},\,z':=z+\frac{g_0}{a_0}$. Then the quadratic becomes $$a_0(y'^2+z'^2)+c_0-\frac{f_0^2+g_0^2}{a_0}=a_0\bigg(y'^2+z'^2+\tfrac{1}{(2a_0)^2}\bigg).$$So now I will need to evaluate$$\frac{1}{a_0^2}\int_\Sigma\frac{dy'dz'}{\bigg(y'^2+z'^2+\tfrac{1}{(2a_0)^2}\bigg)^2}\cdot$$

Your way is easier with the substitution with the $r^{2}$. Do you think I am correct to say the final answer is as you wrote?
 
What I wrote is the next logical step after what you did.
However, the final answer depends on the shape of $\Sigma$.
What is known about $\Sigma$?
Can we assume that it is a disk with some fixed radius?
Or is it something else?
 
Klaas van Aarsen said:
What I wrote is the next logical step after what you did.
However, the final answer depends on the shape of $\Sigma$.
What is known about $\Sigma$?
Can we assume that it is a disk with some fixed radius?
Or is it something else?
Oops. Yes, I forgot to define that. $\Sigma$ is a spacelike 2-surface in spacetime.
 
Dear Klaas, may I know if you have any idea how can I continue now that it is known that $\Sigma$ is a spacelike 2-surface in spacetime? Thank you.
 
Just a question. What does "space-time" have to do with this? Are you in x, y, t or is it x, y where one of these is t? I don't see what would be different with your integral.

-Dan
 
topsquark said:
Just a question. What does "space-time" have to do with this? Are you in x, y, t or is it x, y where one of these is t? I don't see what would be different with your integral.

-Dan
Hello Dan. Thank you for your reply. In this spacetime, I would like to find the area of a portion of the spacetime. Hence the integral. The sigma to be precise can also refer to the boundary of the chosen portion of spacetime. Currently, I am trying another way to solve this and that is by completing the square method. Not sure will be a success or not. Calculus sure is my weak spot. How I hope mathematica, maple can do it.
 
By using completing the square method, I am stuck with this part:

$$\int \frac{dy'+dz'}{((y')^{2}+(z')^{2}+1)^{2}}$$

I would like to intergrate this leaving the answer in equation form. Any ideas how I can do that?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
511
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K