Integral of sec(x): Solving with Substitution

  • Context: MHB 
  • Thread starter Thread starter Mathick
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion revolves around computing the integral of secant, specifically $ \int \sec\left({x}\right) \; dx $, using various substitution methods. Participants explore different approaches, including the substitution $ t=\tan\left({\frac{x}{2}}\right) $ and the transformation $ y=\frac{\pi}{2} - x $, while also referencing the integral of cosecant.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant expresses difficulty in solving the integral using the substitution $ t=\tan\left({\frac{x}{2}}\right) $ and seeks help with a second part involving $ \int \csc\left({x}\right) \; dx $.
  • Another participant suggests using the identity $\cos\left(\frac{\pi}{2}-z\right)=\sin(z)$ to aid in the computation.
  • A detailed step-by-step computation of the integral using the substitution $ z=\tan\left({\frac{x}{2}}\right) $ is provided, leading to a logarithmic expression involving secant and tangent.
  • One participant reiterates the steps of the computation, confirming the same logarithmic result as the previous post.
  • A suggestion is made to substitute $x=\frac\pi 2-y$ and $dx=-dy$, referencing a previous suggestion from another participant.

Areas of Agreement / Disagreement

Participants present multiple approaches and methods for solving the integral, but there is no consensus on the best method or resolution of the difficulties expressed. The discussion remains unresolved with competing views on the approach to take.

Contextual Notes

Some participants' computations involve complex transformations and identities that may depend on specific assumptions or definitions, which are not fully clarified in the discussion.

Mathick
Messages
23
Reaction score
0
Hello! I need to compute the following integral: $ \int \sec\left({x}\right) \; dx $ using the substitution $ t=\tan\left({\frac{x}{2}}\right) $ what I did. HOWEVER, they ask to compute the same integral knowing that $ \int \csc\left({x}\right) \; dx = \log_{e}\left({\tan\left({\frac{x}{2}}\right)}\right) + C $ and using substitution $ y=\frac{\pi}{2} - x $. And I have a lot of problems with the second part of this task. I would be very grateful for some help or advice.
 
Physics news on Phys.org
Use the identity $\cos\left(\frac{\pi}{2}-z\right)=\sin(z)$.
 
Mathick said:
I need to compute the following integral: $\displaystyle \int \sec\left({x}\right) \; dx $ using the substitution $ z=\tan\left({\frac{x}{2}}\right) $
z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2}

\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z} + \frac{1}{1+z}\right)dz

. . . =\;-\ln(1-z) + \ln(1+z) +C \;=\;\ln\left|\frac{1+z}{1-z}\right| + C \;=\; \ln\left|\frac{1+\tan\frac{x}{2}}{1 - \tan\frac{x}{2}}\right| + C

. . . =\;\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right|^2 + C

. . . =\; \frac{1}{2}\ln\left|\frac{\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{2}{2}} {\cos^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^2\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln \left|<br /> \frac{1 + \sin x}{1-\sin x}\right| + C

. . . =\; \frac{1}{2}\ln\left|\frac{1+\sin x}{1 - \sin x}\cdot\frac{1 + \sin x}{1 + \sin x}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2x}\right| + C<br />

. . . =\; \frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right| + C \;=\;\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right|^{\frac{1}{2}} + C

. . . =\;\ln\left|\frac{1+\sin x}{\cos x}\right| + C \;=\; \ln\left|\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right| + C \;=\;\ln|\sec x + \tan x| + C
 
soroban said:
z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2}

\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z} + \frac{1}{1+z}\right)dz

. . . =\;-\ln(1-z) + \ln(1+z) +C \;=\;\ln\left|\frac{1+z}{1-z}\right| + C \;=\; \ln\left|\frac{1+\tan\frac{x}{2}}{1 - \tan\frac{x}{2}}\right| + C

. . . =\;\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right|^2 + C

. . . =\; \frac{1}{2}\ln\left|\frac{\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{2}{2}} {\cos^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^2\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln \left|<br /> \frac{1 + \sin x}{1-\sin x}\right| + C

. . . =\; \frac{1}{2}\ln\left|\frac{1+\sin x}{1 - \sin x}\cdot\frac{1 + \sin x}{1 + \sin x}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2x}\right| + C<br />

. . . =\; \frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right| + C \;=\;\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right|^{\frac{1}{2}} + C

. . . =\;\ln\left|\frac{1+\sin x}{\cos x}\right| + C \;=\; \ln\left|\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right| + C \;=\;\ln|\sec x + \tan x| + C

I appreciate that but I didn't ask for that...
 
How about substituting $x=\frac\pi 2-y$ and $dx=-dy$, and using greg1313's suggestion?
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K