Integral of sec(x): Solving with Substitution

  • Context: MHB 
  • Thread starter Thread starter Mathick
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral of secant, represented as $ \int \sec(x) \; dx $, can be computed using the substitution $ z = \tan\left(\frac{x}{2}\right) $. This method leads to the result $ \ln\left|\sec x + \tan x\right| + C $. Additionally, the discussion highlights an alternative approach using the substitution $ y = \frac{\pi}{2} - x $, which requires the identity $ \cos\left(\frac{\pi}{2}-z\right) = \sin(z) $ to facilitate the calculation. Both methods yield valid results for the integral.

PREREQUISITES
  • Understanding of trigonometric identities, specifically $ \cos\left(\frac{\pi}{2}-z\right) = \sin(z) $.
  • Familiarity with the substitution method in integral calculus.
  • Knowledge of logarithmic properties and their application in integration.
  • Proficiency in handling inverse trigonometric functions, particularly $ \arctan $.
NEXT STEPS
  • Study the derivation of $ \int \sec(x) \; dx $ using various substitution techniques.
  • Explore the relationship between secant and tangent functions in integration.
  • Learn about the properties of logarithmic functions in calculus.
  • Investigate alternative methods for integrating trigonometric functions, such as integration by parts.
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in mastering integral calculus, particularly in the context of trigonometric functions.

Mathick
Messages
23
Reaction score
0
Hello! I need to compute the following integral: $ \int \sec\left({x}\right) \; dx $ using the substitution $ t=\tan\left({\frac{x}{2}}\right) $ what I did. HOWEVER, they ask to compute the same integral knowing that $ \int \csc\left({x}\right) \; dx = \log_{e}\left({\tan\left({\frac{x}{2}}\right)}\right) + C $ and using substitution $ y=\frac{\pi}{2} - x $. And I have a lot of problems with the second part of this task. I would be very grateful for some help or advice.
 
Physics news on Phys.org
Use the identity $\cos\left(\frac{\pi}{2}-z\right)=\sin(z)$.
 
Mathick said:
I need to compute the following integral: $\displaystyle \int \sec\left({x}\right) \; dx $ using the substitution $ z=\tan\left({\frac{x}{2}}\right) $
z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2}

\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z} + \frac{1}{1+z}\right)dz

. . . =\;-\ln(1-z) + \ln(1+z) +C \;=\;\ln\left|\frac{1+z}{1-z}\right| + C \;=\; \ln\left|\frac{1+\tan\frac{x}{2}}{1 - \tan\frac{x}{2}}\right| + C

. . . =\;\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right|^2 + C

. . . =\; \frac{1}{2}\ln\left|\frac{\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{2}{2}} {\cos^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^2\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln \left|<br /> \frac{1 + \sin x}{1-\sin x}\right| + C

. . . =\; \frac{1}{2}\ln\left|\frac{1+\sin x}{1 - \sin x}\cdot\frac{1 + \sin x}{1 + \sin x}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2x}\right| + C<br />

. . . =\; \frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right| + C \;=\;\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right|^{\frac{1}{2}} + C

. . . =\;\ln\left|\frac{1+\sin x}{\cos x}\right| + C \;=\; \ln\left|\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right| + C \;=\;\ln|\sec x + \tan x| + C
 
soroban said:
z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2}

\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z} + \frac{1}{1+z}\right)dz

. . . =\;-\ln(1-z) + \ln(1+z) +C \;=\;\ln\left|\frac{1+z}{1-z}\right| + C \;=\; \ln\left|\frac{1+\tan\frac{x}{2}}{1 - \tan\frac{x}{2}}\right| + C

. . . =\;\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right|^2 + C

. . . =\; \frac{1}{2}\ln\left|\frac{\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{2}{2}} {\cos^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^2\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln \left|<br /> \frac{1 + \sin x}{1-\sin x}\right| + C

. . . =\; \frac{1}{2}\ln\left|\frac{1+\sin x}{1 - \sin x}\cdot\frac{1 + \sin x}{1 + \sin x}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2x}\right| + C<br />

. . . =\; \frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right| + C \;=\;\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right|^{\frac{1}{2}} + C

. . . =\;\ln\left|\frac{1+\sin x}{\cos x}\right| + C \;=\; \ln\left|\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right| + C \;=\;\ln|\sec x + \tan x| + C

I appreciate that but I didn't ask for that...
 
How about substituting $x=\frac\pi 2-y$ and $dx=-dy$, and using greg1313's suggestion?
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K