MHB Integral of sec(x): Solving with Substitution

  • Thread starter Thread starter Mathick
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral of sec(x) can be computed using the substitution t = tan(x/2), leading to the result ln|sec(x) + tan(x)| + C. The discussion also explores an alternative approach by substituting y = π/2 - x, which requires applying the identity cos(π/2 - z) = sin(z). The challenges in solving the integral using this second substitution are acknowledged, with suggestions for further assistance. The conversation highlights the complexity of integrating sec(x) and the various methods available for solving it. Overall, the integral's solution emphasizes the importance of substitution techniques in calculus.
Mathick
Messages
23
Reaction score
0
Hello! I need to compute the following integral: $ \int \sec\left({x}\right) \; dx $ using the substitution $ t=\tan\left({\frac{x}{2}}\right) $ what I did. HOWEVER, they ask to compute the same integral knowing that $ \int \csc\left({x}\right) \; dx = \log_{e}\left({\tan\left({\frac{x}{2}}\right)}\right) + C $ and using substitution $ y=\frac{\pi}{2} - x $. And I have a lot of problems with the second part of this task. I would be very grateful for some help or advice.
 
Physics news on Phys.org
Use the identity $\cos\left(\frac{\pi}{2}-z\right)=\sin(z)$.
 
Mathick said:
I need to compute the following integral: $\displaystyle \int \sec\left({x}\right) \; dx $ using the substitution $ z=\tan\left({\frac{x}{2}}\right) $
z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2}

\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z} + \frac{1}{1+z}\right)dz

. . . =\;-\ln(1-z) + \ln(1+z) +C \;=\;\ln\left|\frac{1+z}{1-z}\right| + C \;=\; \ln\left|\frac{1+\tan\frac{x}{2}}{1 - \tan\frac{x}{2}}\right| + C

. . . =\;\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right|^2 + C

. . . =\; \frac{1}{2}\ln\left|\frac{\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{2}{2}} {\cos^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^2\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln \left|<br /> \frac{1 + \sin x}{1-\sin x}\right| + C

. . . =\; \frac{1}{2}\ln\left|\frac{1+\sin x}{1 - \sin x}\cdot\frac{1 + \sin x}{1 + \sin x}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2x}\right| + C<br />

. . . =\; \frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right| + C \;=\;\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right|^{\frac{1}{2}} + C

. . . =\;\ln\left|\frac{1+\sin x}{\cos x}\right| + C \;=\; \ln\left|\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right| + C \;=\;\ln|\sec x + \tan x| + C
 
soroban said:
z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2}

\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z} + \frac{1}{1+z}\right)dz

. . . =\;-\ln(1-z) + \ln(1+z) +C \;=\;\ln\left|\frac{1+z}{1-z}\right| + C \;=\; \ln\left|\frac{1+\tan\frac{x}{2}}{1 - \tan\frac{x}{2}}\right| + C

. . . =\;\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right|^2 + C

. . . =\; \frac{1}{2}\ln\left|\frac{\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{2}{2}} {\cos^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^2\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln \left|<br /> \frac{1 + \sin x}{1-\sin x}\right| + C

. . . =\; \frac{1}{2}\ln\left|\frac{1+\sin x}{1 - \sin x}\cdot\frac{1 + \sin x}{1 + \sin x}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2x}\right| + C<br />

. . . =\; \frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right| + C \;=\;\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right|^{\frac{1}{2}} + C

. . . =\;\ln\left|\frac{1+\sin x}{\cos x}\right| + C \;=\; \ln\left|\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right| + C \;=\;\ln|\sec x + \tan x| + C

I appreciate that but I didn't ask for that...
 
How about substituting $x=\frac\pi 2-y$ and $dx=-dy$, and using greg1313's suggestion?
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K