Integral of Sin over Exponential: Solutions

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx$$ using various mathematical techniques, including contour integration, series expansions, and complex analysis. Participants explore different approaches to derive the integral's value and discuss the conditions under which their methods are valid.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests that the integral can be transformed using a substitution, leading to a series representation involving the Riemann zeta function.
  • Another participant notes that their solution relies on the condition $$|a|<2 \pi$$ and expresses intent to find a general solution.
  • A different approach is presented that involves computing the series $$\sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}}$$ through the Fourier series expansion of the function $$\cosh ax$$, leading to a specific result involving hyperbolic cotangent.
  • Another participant introduces a complex analysis method, discussing residues and the cotangent function, to derive a related series representation for the integral.

Areas of Agreement / Disagreement

Participants present multiple competing views and methods for evaluating the integral, with no consensus reached on a single approach or solution. The discussion remains unresolved as different techniques yield various insights and results.

Contextual Notes

Some methods depend on specific conditions, such as the value of $$a$$, and the validity of certain mathematical steps remains unresolved. The discussion includes various assumptions and transformations that may not be universally applicable.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx $$
 
Physics news on Phys.org
The integral can be solved by contour integration but I made a mistake somewhere , anyways the following approach is somehow a transformation to the contour to famous one .

$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx $$

Let $$t = 2 \pi x$$

$$
\begin{align*}

\frac{1}{2\pi }\int^{\infty}_0 \frac{\sin \left(\frac{at}{2\pi } \right) }{e^{t}-1} \, dt &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n}{\Gamma(2n+2)}\int^{\infty}_0 \frac{ \left(\frac{at}{2\pi } \right)^{2n+1} }{e^{t}-1} \, dt \\
\\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}}{\Gamma(2n+2)}\int^{\infty}_0 \frac{t^{2n+1} }{e^{t}-1} \, dt \\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1} \Gamma (2n+2)\zeta(2n+2)}{\Gamma(2n+2)} \\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\zeta(2n+2)\\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\sum_{k=1}^{\infty} \frac{1}{k^{2n+2}}\\

&=\frac{1}{2\pi }\sum_{k=1}^{\infty}\frac{1}{k^2}\sum^{\infty}_{n =0}(-1)^n \frac{\left(\frac{a}{2\pi } \right)^{2n+1} }{k^{2n}}\\

&=\frac{a}{4\pi^2 } \sum_{k=1}^{\infty} \frac{1}{k^2} \sum^{\infty}_{n =0}\left( -\frac{a^2}{4\pi^2 k^2 } \right)^n \\

&=\frac{a}{4\pi^2 }\sum_{k=1}^{\infty}\frac{1}{k^2(1+\frac{a^2}{4\pi^2 k^2})} \\

&= \sum_{k=1}^{\infty}\frac{a}{k^2+a^2}\\

\end{align*}$$

$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx = \sum_{k=1}^{\infty}\frac{a}{k^2+a^2} $$If anyone wants to try this sum , otherwise I will solve it in the next thread .
 
My solution is based on that $$|a|<2 \pi $$ . I will try to find a general solution.
 
The series...$$\sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}}\ (1)$$... can be computed finding the Fourier series expansion of the function $\cosh ax$ in $[-\pi,\pi]$ obtaining... $$\cosh ax = \frac{\sinh \pi a}{\pi\ a} + 2\ a\ \frac{\sinh \pi a}{\pi}\ \sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2} + a^{2}}\ \cos n x\ (2)$$

... and setting in (2) $x=\pi$ we obtain...

$$ \sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}} = \frac{\pi}{2} (\coth \pi a - \frac{1}{\pi\ a})\ (3)$$

Kind regards

$\chi$ $\sigma$
 
The other way is using complex analysis

$$\sum_{k=-\infty}^{\infty }\frac{a}{k^2+a^2} =- \text{Res}\left(\frac{a \pi \cot ( \pi z) }{z^2+a^2} ;\pm ai \right)$$$$\sum_{k \leq -1}\frac{a}{k^2+a^2}+ \frac{1}{a}+ \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \cot(a \pi i)}{2ai}-\frac{\pi \cot(-a \pi i)}{-2ai}$$$$\frac{1}{a}+ 2 \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \coth(a \pi i)}{2ai}-\frac{\pi \cot(a\pi i )}{2ai}=-2\frac{\pi \cot(a\pi i )}{2ai} = \frac{\pi \coth( \pi a) }{a} $$

$$ \sum_{k \geq 1}\frac{a}{k^2+a^2}=\frac{\pi \coth( \pi a) }{2a} -\frac{1}{2a}$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K