Integral of Sin over Exponential: Solutions

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral $$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx$$ can be evaluated using contour integration techniques, yielding the result $$\sum_{k=1}^{\infty}\frac{a}{k^2+a^2}$$ under the condition that $$|a|<2\pi$$. The solution involves transforming the integral and utilizing the properties of the Gamma function and the Riemann zeta function. Additionally, the series can be computed through Fourier series expansion of the function $$\cosh(ax)$$.

PREREQUISITES
  • Understanding of contour integration techniques
  • Familiarity with the Gamma function and Riemann zeta function
  • Knowledge of Fourier series and their applications
  • Basic principles of complex analysis
NEXT STEPS
  • Study advanced contour integration methods in complex analysis
  • Learn about the properties and applications of the Gamma function
  • Explore the Riemann zeta function and its significance in number theory
  • Investigate Fourier series expansions and their convergence properties
USEFUL FOR

Mathematicians, physicists, and students engaged in advanced calculus, particularly those interested in integral evaluation and complex analysis techniques.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx $$
 
Physics news on Phys.org
The integral can be solved by contour integration but I made a mistake somewhere , anyways the following approach is somehow a transformation to the contour to famous one .

$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx $$

Let $$t = 2 \pi x$$

$$
\begin{align*}

\frac{1}{2\pi }\int^{\infty}_0 \frac{\sin \left(\frac{at}{2\pi } \right) }{e^{t}-1} \, dt &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n}{\Gamma(2n+2)}\int^{\infty}_0 \frac{ \left(\frac{at}{2\pi } \right)^{2n+1} }{e^{t}-1} \, dt \\
\\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}}{\Gamma(2n+2)}\int^{\infty}_0 \frac{t^{2n+1} }{e^{t}-1} \, dt \\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1} \Gamma (2n+2)\zeta(2n+2)}{\Gamma(2n+2)} \\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\zeta(2n+2)\\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\sum_{k=1}^{\infty} \frac{1}{k^{2n+2}}\\

&=\frac{1}{2\pi }\sum_{k=1}^{\infty}\frac{1}{k^2}\sum^{\infty}_{n =0}(-1)^n \frac{\left(\frac{a}{2\pi } \right)^{2n+1} }{k^{2n}}\\

&=\frac{a}{4\pi^2 } \sum_{k=1}^{\infty} \frac{1}{k^2} \sum^{\infty}_{n =0}\left( -\frac{a^2}{4\pi^2 k^2 } \right)^n \\

&=\frac{a}{4\pi^2 }\sum_{k=1}^{\infty}\frac{1}{k^2(1+\frac{a^2}{4\pi^2 k^2})} \\

&= \sum_{k=1}^{\infty}\frac{a}{k^2+a^2}\\

\end{align*}$$

$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx = \sum_{k=1}^{\infty}\frac{a}{k^2+a^2} $$If anyone wants to try this sum , otherwise I will solve it in the next thread .
 
My solution is based on that $$|a|<2 \pi $$ . I will try to find a general solution.
 
The series...$$\sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}}\ (1)$$... can be computed finding the Fourier series expansion of the function $\cosh ax$ in $[-\pi,\pi]$ obtaining... $$\cosh ax = \frac{\sinh \pi a}{\pi\ a} + 2\ a\ \frac{\sinh \pi a}{\pi}\ \sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2} + a^{2}}\ \cos n x\ (2)$$

... and setting in (2) $x=\pi$ we obtain...

$$ \sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}} = \frac{\pi}{2} (\coth \pi a - \frac{1}{\pi\ a})\ (3)$$

Kind regards

$\chi$ $\sigma$
 
The other way is using complex analysis

$$\sum_{k=-\infty}^{\infty }\frac{a}{k^2+a^2} =- \text{Res}\left(\frac{a \pi \cot ( \pi z) }{z^2+a^2} ;\pm ai \right)$$$$\sum_{k \leq -1}\frac{a}{k^2+a^2}+ \frac{1}{a}+ \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \cot(a \pi i)}{2ai}-\frac{\pi \cot(-a \pi i)}{-2ai}$$$$\frac{1}{a}+ 2 \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \coth(a \pi i)}{2ai}-\frac{\pi \cot(a\pi i )}{2ai}=-2\frac{\pi \cot(a\pi i )}{2ai} = \frac{\pi \coth( \pi a) }{a} $$

$$ \sum_{k \geq 1}\frac{a}{k^2+a^2}=\frac{\pi \coth( \pi a) }{2a} -\frac{1}{2a}$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K