MHB Integral of Sin over Exponential: Solutions

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral $$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx$$ can be transformed using the substitution $$t = 2 \pi x$$, leading to a series representation involving the Riemann zeta function. The result is expressed as $$\sum_{k=1}^{\infty}\frac{a}{k^2+a^2}$$, valid for $$|a|<2\pi$$. Additionally, a Fourier series expansion of the function $$\cosh(ax)$$ provides another method to compute the series, yielding a specific formula involving $$\coth(\pi a)$$. Complex analysis techniques are also discussed, highlighting the relationship between the series and residues. The discussion emphasizes the potential for further exploration of the integral's solutions.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx $$
 
Mathematics news on Phys.org
The integral can be solved by contour integration but I made a mistake somewhere , anyways the following approach is somehow a transformation to the contour to famous one .

$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx $$

Let $$t = 2 \pi x$$

$$
\begin{align*}

\frac{1}{2\pi }\int^{\infty}_0 \frac{\sin \left(\frac{at}{2\pi } \right) }{e^{t}-1} \, dt &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n}{\Gamma(2n+2)}\int^{\infty}_0 \frac{ \left(\frac{at}{2\pi } \right)^{2n+1} }{e^{t}-1} \, dt \\
\\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}}{\Gamma(2n+2)}\int^{\infty}_0 \frac{t^{2n+1} }{e^{t}-1} \, dt \\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1} \Gamma (2n+2)\zeta(2n+2)}{\Gamma(2n+2)} \\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\zeta(2n+2)\\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\sum_{k=1}^{\infty} \frac{1}{k^{2n+2}}\\

&=\frac{1}{2\pi }\sum_{k=1}^{\infty}\frac{1}{k^2}\sum^{\infty}_{n =0}(-1)^n \frac{\left(\frac{a}{2\pi } \right)^{2n+1} }{k^{2n}}\\

&=\frac{a}{4\pi^2 } \sum_{k=1}^{\infty} \frac{1}{k^2} \sum^{\infty}_{n =0}\left( -\frac{a^2}{4\pi^2 k^2 } \right)^n \\

&=\frac{a}{4\pi^2 }\sum_{k=1}^{\infty}\frac{1}{k^2(1+\frac{a^2}{4\pi^2 k^2})} \\

&= \sum_{k=1}^{\infty}\frac{a}{k^2+a^2}\\

\end{align*}$$

$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx = \sum_{k=1}^{\infty}\frac{a}{k^2+a^2} $$If anyone wants to try this sum , otherwise I will solve it in the next thread .
 
My solution is based on that $$|a|<2 \pi $$ . I will try to find a general solution.
 
The series...$$\sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}}\ (1)$$... can be computed finding the Fourier series expansion of the function $\cosh ax$ in $[-\pi,\pi]$ obtaining... $$\cosh ax = \frac{\sinh \pi a}{\pi\ a} + 2\ a\ \frac{\sinh \pi a}{\pi}\ \sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2} + a^{2}}\ \cos n x\ (2)$$

... and setting in (2) $x=\pi$ we obtain...

$$ \sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}} = \frac{\pi}{2} (\coth \pi a - \frac{1}{\pi\ a})\ (3)$$

Kind regards

$\chi$ $\sigma$
 
The other way is using complex analysis

$$\sum_{k=-\infty}^{\infty }\frac{a}{k^2+a^2} =- \text{Res}\left(\frac{a \pi \cot ( \pi z) }{z^2+a^2} ;\pm ai \right)$$$$\sum_{k \leq -1}\frac{a}{k^2+a^2}+ \frac{1}{a}+ \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \cot(a \pi i)}{2ai}-\frac{\pi \cot(-a \pi i)}{-2ai}$$$$\frac{1}{a}+ 2 \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \coth(a \pi i)}{2ai}-\frac{\pi \cot(a\pi i )}{2ai}=-2\frac{\pi \cot(a\pi i )}{2ai} = \frac{\pi \coth( \pi a) }{a} $$

$$ \sum_{k \geq 1}\frac{a}{k^2+a^2}=\frac{\pi \coth( \pi a) }{2a} -\frac{1}{2a}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top