Given a http://en.wikipedia.org/wiki/Simplex#The_standard_simplex" in [itex]\mathbb{R}^n[/itex]:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\Omega = \left\{ {{\textbf{y}}:\,\,\,\,{y_i} \ge 0,\,\,\,\,1 = \sum\limits_{i = 1}^n {{y_i}} } \right\}[/tex]

wherenis a positive integer, and a vector [itex]\textbf{a}[/itex] withnelements [itex]a_i>1[/itex],

I need to evaluate the integral

(1) [tex]G({\textbf{a}},m,s,t) = \int\limits_{\textbf{y} \in \Omega } {{{\left( {\sum\limits_{i = 1}^m {{y_i}} } \right)}^s}{{\left( {\sum\limits_{i = m}^n {{y_i}} } \right)}^t}\left( {\prod\limits_{i = 1}^n {{y_i}^{{a_i} - 1}} } \right)dy} [/tex]

wheretandsare real non-negative numbers, andmis an integer between 1 andn. The integral is taken over the standardn-1 simplex [itex]\Omega[/itex] with respect to [itex]dy = dy_1 dy_2...dy_n[/itex].

Similar integrals that have well-known solutions are:

(2) [tex]\int\limits_{y \in \Omega } {\prod\limits_{i = 1}^n {{y_i}^{{a_i} - 1}} dy} = \frac{{\prod\limits_{i = 1}^n {\Gamma ({a_i})} }}{{\Gamma \left( {\sum\limits_{i = 1}^n {{a_i}} } \right)}}[/tex]

and

(3) [tex]\int\limits_{y \in \Omega } {{{\left( {\sum\limits_{i = 1}^m {{y_i}} } \right)}^s}{{\left( {\sum\limits_{i = m + 1}^n {{y_i}} } \right)}^t}\left( {\prod\limits_{i = 1}^n {{y_i}^{{a_i} - 1}} } \right)dy} = \frac{{\prod\limits_{i = 1}^n {\Gamma ({a_i})} }}{{\Gamma \left( {s + t + \sum\limits_{i = 1}^n {{a_i}} } \right)}}\frac{{\Gamma \left( {s + \sum\limits_{i = 1}^m {{a_i}} } \right)}}{{\Gamma \left( {\sum\limits_{i = 1}^m {{a_i}} } \right)}}\frac{{\Gamma \left( {t + \sum\limits_{i = m + 1}^n {{a_i}} } \right)}}{{\Gamma \left( {\sum\limits_{i = m + 1}^n {{a_i}} } \right)}}[/tex]

where [itex]\Gamma[/itex] is the Gamma function.

Note that the only difference between (1) and (3) is that the second sum in (3) goes fromm+1 toninstead of frommton. This difference is however important, surely making the solution to (1) more complicated than that of (3).

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integral over standard n-simplex

Loading...

Similar Threads - Integral standard simplex | Date |
---|---|

A Integrate f(x) = tanh(c*x^b)? Wolfram says not possible ... | Sunday at 2:00 PM |

Standard notation for "open integral" | May 13, 2015 |

How to get this integral into standard form | Nov 18, 2011 |

Absolute values in standard integrals | Feb 7, 2010 |

Standard answer for integral of cos(2deta)cos(ndeta) | Aug 21, 2005 |

**Physics Forums - The Fusion of Science and Community**