Evaluate Integral from 0 to 2 Using Power Series | Find Pi Estimate

  • Thread starter Thread starter the7joker7
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral of 40/(x^2 + 4) from 0 to 2 evaluates to 5π, establishing k as 5. The power series for the function f(x) = 40/(x^2 + 4) is derived from the series expansion, leading to an infinite series for integration. The initial terms of the series were miscalculated, but the correct approach involves recognizing the function's form to simplify the series. The estimates for π and the upper bound for error using the first 10 terms were found to be inaccurate, requiring adjustments to the series representation for correct results.
the7joker7
Messages
111
Reaction score
0

Homework Statement



Evaluate the integral...

int(0 to 2) of 40/(x^2 + 4)dx

a: Your answer should be in the form ` kpi `, where ` k ` is an integer. What is the value of ` k `?

b: Now, let's evaluate the same integral using power series. First, find the power series for the function ` f(x) = (40)/(x^2+4) `. Then, integrate it from 0 to 2, and call it S. S should be an infinite series.

What are the first few terms of S ?

c: The answers to part (a) and (b) are equal (why?). Hence, if you divide your infinite series from (b) by ` k ` (the answer to (a)), you have found an estimate for the value of ` pi ` in terms of an infinite series. Approximate the value of ` pi ` by the first 5 terms.

d: What is the upper bound for your error of your estimate if you use the first 10 terms? (Use the alternating series estimation.)

The Attempt at a Solution



k is 5, this is correct, I know how to get k...

the first term of the series is 20, I know how to get that, but then the rest of my series goes wacky.

Here's my equation for the series

the sum of (-1)^n * ((2)^(2n + 1)/(10^(n - 1) * (2n + 1))

I can show how I got that in case anyone wants, but I think it's fairly obvious.

And at the end of that, using exact integral notation, there'd be the same equation but instead of that first 2 there'd be a 0, but that simplifies to 0 so it doesn't matter.

When I use n = 0, I get 20 like I'm supposed to, but when I use n = 1, i get -2.6667...answer is -6.6667

my next term is .64, should be getting 4...then -.182857, should get a -2.85714285714...then .0568888889, should get a 2.22222222222...

For c and d of course I'm going to be off, but I got 3.5694 and 3.64722E-6 respectively. The correct answers are 3.33968253968 and 0.190476190476.

Help?
 
Physics news on Phys.org
OK. So, first of all, your series is close, but not correct. Since \frac{40}{x^2+4} is the same as \frac{10}{1+\frac{x^2}{4}}, for all x in the interval of convergence,

{\int_0^2 f(x) dx} = 10 {\int_0^2 {\sum_n \left(\frac{-1}{4}\right)^n x^{2n} } dx} = 10{\sum_n \left(\frac{-1}{4}\right)^n \frac{2^{2n+1} }{2n+1}}

This should fix your problem. :)
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K