Integral w/ ln: Struggling? Get Help Here!

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Integral Ln
Click For Summary
SUMMARY

The integral \(\int \ln\left(\sqrt{x}+1 \right)\,dx\) can be effectively solved using integration by parts. By letting \(u = \ln\left(\sqrt{x}+1\right)\) and \(dv = dx\), the integral transforms into \(x\ln\left(\sqrt{x}+1\right) - \int \frac{x}{2\sqrt{x}\left(\sqrt{x}+1\right)}\,dx\). A substitution \(t = \sqrt{x} + 1\) simplifies the remaining integral, leading to a complete solution involving logarithmic and polynomial terms. The final expression includes constants and terms derived from the original integral.

PREREQUISITES
  • Integration by parts
  • Substitution methods in calculus
  • Understanding of logarithmic functions
  • Basic algebraic manipulation
NEXT STEPS
  • Study advanced integration techniques, including integration by parts and substitution methods.
  • Explore the properties of logarithmic functions in calculus.
  • Practice solving integrals involving square roots and logarithms.
  • Learn about the application of definite integrals in real-world problems.
USEFUL FOR

Students of calculus, mathematics educators, and anyone looking to deepen their understanding of integration techniques, particularly involving logarithmic functions and substitution methods.

Yankel
Messages
390
Reaction score
0
Hello

I am struggling with this integral:

\[\int \ln\left(\sqrt{x}+1 \right)\,dx\]I tried integrating by parts (multiplying the integral by 1), however I got stuck with another integral I couldn't solve on the way

\[\int \frac{1}{\sqrt{x}+1}dx\]Thanks !
 
Physics news on Phys.org
I would try a substitution involving the argument of the log function first, then integration by parts. :D

$$w=\sqrt{x}+1\,\therefore\,dx=2(w-1)\,dw$$

and we have:

$$I=2\int(w-1)\ln(w)\,dw$$

Integration by parts:

$$u=\ln(w)\,\therefore\,du=\frac{1}{w}\,dw$$

$$dv=(w-1)dw\,\therefore\,v=\frac{w^2}{2}-w=\frac{w(w-2)}{2}$$

$$I=2\left(\frac{w(w-2)}{2}\ln(w)-\frac{1}{2}\int w-2\,dw \right)$$

$$I=w(w-2)\ln(w)-\frac{1}{2}w^2+2w+C$$

Back-substitute for $w$:

$$w^2-2w=x-1$$

$$-\frac{1}{2}w^2+2w=-\frac{x}{2}+\sqrt{x}+\frac{3}{2}$$

Hence:

$$I=(x-1)\ln\left(\sqrt{x}+1 \right)-\frac{x}{2}+\sqrt{x}+C$$
 
I think its better you do by parts first.Then you may arrive at $$\int\frac{\sqrt{x}}{\sqrt{x}+1}dx$$
Edit : made a mistake earlier,Okay may be that's what you have asked(Bandit)

i would do it by letting,
$$\begin{align*}x&=t^2\\dx&=2tdt\end{align*}$$
so,
$$\int\frac{2t}{t+1}dt=2t-2\log(t+1)$$
 
Last edited:
mathworker said:
I think its better you do by parts first.Then you may arrive at $$\int\frac{\sqrt{x}}{\sqrt{x}+1}dx$$
Edit : made a mistake earlier

How do you arrive at this?
 
$$\int\log\sqrt{x}+1dx=logx\int1dx-\int\frac{1}{\sqrt{x}+1}\frac{1}{2\sqrt{x}}xdx=x\log{x}-\frac{1}{2}\int\frac{\sqrt{x}}{\sqrt{x}+1}$$
 
Yankel said:
Hello

I am struggling with this integral:

\[\int \ln\left(\sqrt{x}+1 \right)\,dx\]I tried integrating by parts (multiplying the integral by 1), however I got stuck with another integral I couldn't solve on the way

\[\int \frac{1}{\sqrt{x}+1}dx\]Thanks !

\displaystyle \begin{align*} \int{ \ln{ \left( \sqrt{x} + 1 \right) } \, dx} &= \int{ 1 \cdot \ln{ \left( \sqrt{x} + 1 \right) } \, dx} \end{align*}

Now applying integration by parts with \displaystyle \begin{align*} u = \ln{ \left( \sqrt{x} + 1 \right) } \implies du = \frac{1}{2\sqrt{x} \, \left( \sqrt{x} + 1 \right) } \, dx \end{align*} and \displaystyle \begin{align*} dv = 1\, dx \implies v = x \end{align*} and the integral becomes

\displaystyle \begin{align*} \int{ 1 \cdot \ln{ \left( \sqrt{x} + 1 \right) } \, dx} &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{x}{2\sqrt{x}\,\left( \sqrt{x} + 1 \right) } \, dx} \end{align*}

Now let \displaystyle \begin{align*} t = \sqrt{x} + 1 \implies dt = \frac{1}{2\sqrt{x}}\,dx \end{align*} and the integral becomes

\displaystyle \begin{align*} x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{x}{2\sqrt{x}\,\left( \sqrt{x} + 1 \right) } \, dx} &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{ (t - 1)^2 }{t} \,dt } \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{t^2 - 2t + 1}{t}\,dt} \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ t - 2 + \frac{1}{t} \, dt} \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \left( \frac{t^2}{2} - 2t + \ln{|t|} \right) + C \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \frac{t^2}{2} + 2t - \ln{|t|} + C \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \frac{ \left( \sqrt{x} + 1 \right) ^2}{2} + 2 \left( \sqrt{x} + 1 \right) - \ln{ \left| \sqrt{x} + 1 \right| } + C \end{align*}
 
Thanks everyone, very helpful
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 19 ·
Replies
19
Views
4K