Yankel said:
Hello
I am struggling with this integral:
\[\int \ln\left(\sqrt{x}+1 \right)\,dx\]I tried integrating by parts (multiplying the integral by 1), however I got stuck with another integral I couldn't solve on the way
\[\int \frac{1}{\sqrt{x}+1}dx\]Thanks !
\displaystyle \begin{align*} \int{ \ln{ \left( \sqrt{x} + 1 \right) } \, dx} &= \int{ 1 \cdot \ln{ \left( \sqrt{x} + 1 \right) } \, dx} \end{align*}
Now applying integration by parts with \displaystyle \begin{align*} u = \ln{ \left( \sqrt{x} + 1 \right) } \implies du = \frac{1}{2\sqrt{x} \, \left( \sqrt{x} + 1 \right) } \, dx \end{align*} and \displaystyle \begin{align*} dv = 1\, dx \implies v = x \end{align*} and the integral becomes
\displaystyle \begin{align*} \int{ 1 \cdot \ln{ \left( \sqrt{x} + 1 \right) } \, dx} &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{x}{2\sqrt{x}\,\left( \sqrt{x} + 1 \right) } \, dx} \end{align*}
Now let \displaystyle \begin{align*} t = \sqrt{x} + 1 \implies dt = \frac{1}{2\sqrt{x}}\,dx \end{align*} and the integral becomes
\displaystyle \begin{align*} x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{x}{2\sqrt{x}\,\left( \sqrt{x} + 1 \right) } \, dx} &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{ (t - 1)^2 }{t} \,dt } \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{t^2 - 2t + 1}{t}\,dt} \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ t - 2 + \frac{1}{t} \, dt} \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \left( \frac{t^2}{2} - 2t + \ln{|t|} \right) + C \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \frac{t^2}{2} + 2t - \ln{|t|} + C \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \frac{ \left( \sqrt{x} + 1 \right) ^2}{2} + 2 \left( \sqrt{x} + 1 \right) - \ln{ \left| \sqrt{x} + 1 \right| } + C \end{align*}