MHB Integral w/ ln: Struggling? Get Help Here!

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Integral Ln
Click For Summary
The discussion focuses on solving the integral \(\int \ln\left(\sqrt{x}+1 \right)\,dx\). Participants suggest using integration by parts, with one user recommending a substitution involving the argument of the logarithm. The integration process involves setting \(u = \ln\left(\sqrt{x}+1\right)\) and applying the integration by parts formula, leading to a more manageable integral. The conversation also includes corrections and clarifications on the steps involved in the integration process. Overall, the thread provides valuable insights and techniques for tackling this specific integral.
Yankel
Messages
390
Reaction score
0
Hello

I am struggling with this integral:

\[\int \ln\left(\sqrt{x}+1 \right)\,dx\]I tried integrating by parts (multiplying the integral by 1), however I got stuck with another integral I couldn't solve on the way

\[\int \frac{1}{\sqrt{x}+1}dx\]Thanks !
 
Physics news on Phys.org
I would try a substitution involving the argument of the log function first, then integration by parts. :D

$$w=\sqrt{x}+1\,\therefore\,dx=2(w-1)\,dw$$

and we have:

$$I=2\int(w-1)\ln(w)\,dw$$

Integration by parts:

$$u=\ln(w)\,\therefore\,du=\frac{1}{w}\,dw$$

$$dv=(w-1)dw\,\therefore\,v=\frac{w^2}{2}-w=\frac{w(w-2)}{2}$$

$$I=2\left(\frac{w(w-2)}{2}\ln(w)-\frac{1}{2}\int w-2\,dw \right)$$

$$I=w(w-2)\ln(w)-\frac{1}{2}w^2+2w+C$$

Back-substitute for $w$:

$$w^2-2w=x-1$$

$$-\frac{1}{2}w^2+2w=-\frac{x}{2}+\sqrt{x}+\frac{3}{2}$$

Hence:

$$I=(x-1)\ln\left(\sqrt{x}+1 \right)-\frac{x}{2}+\sqrt{x}+C$$
 
I think its better you do by parts first.Then you may arrive at $$\int\frac{\sqrt{x}}{\sqrt{x}+1}dx$$
Edit : made a mistake earlier,Okay may be that's what you have asked(Bandit)

i would do it by letting,
$$\begin{align*}x&=t^2\\dx&=2tdt\end{align*}$$
so,
$$\int\frac{2t}{t+1}dt=2t-2\log(t+1)$$
 
Last edited:
mathworker said:
I think its better you do by parts first.Then you may arrive at $$\int\frac{\sqrt{x}}{\sqrt{x}+1}dx$$
Edit : made a mistake earlier

How do you arrive at this?
 
$$\int\log\sqrt{x}+1dx=logx\int1dx-\int\frac{1}{\sqrt{x}+1}\frac{1}{2\sqrt{x}}xdx=x\log{x}-\frac{1}{2}\int\frac{\sqrt{x}}{\sqrt{x}+1}$$
 
Yankel said:
Hello

I am struggling with this integral:

\[\int \ln\left(\sqrt{x}+1 \right)\,dx\]I tried integrating by parts (multiplying the integral by 1), however I got stuck with another integral I couldn't solve on the way

\[\int \frac{1}{\sqrt{x}+1}dx\]Thanks !

\displaystyle \begin{align*} \int{ \ln{ \left( \sqrt{x} + 1 \right) } \, dx} &= \int{ 1 \cdot \ln{ \left( \sqrt{x} + 1 \right) } \, dx} \end{align*}

Now applying integration by parts with \displaystyle \begin{align*} u = \ln{ \left( \sqrt{x} + 1 \right) } \implies du = \frac{1}{2\sqrt{x} \, \left( \sqrt{x} + 1 \right) } \, dx \end{align*} and \displaystyle \begin{align*} dv = 1\, dx \implies v = x \end{align*} and the integral becomes

\displaystyle \begin{align*} \int{ 1 \cdot \ln{ \left( \sqrt{x} + 1 \right) } \, dx} &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{x}{2\sqrt{x}\,\left( \sqrt{x} + 1 \right) } \, dx} \end{align*}

Now let \displaystyle \begin{align*} t = \sqrt{x} + 1 \implies dt = \frac{1}{2\sqrt{x}}\,dx \end{align*} and the integral becomes

\displaystyle \begin{align*} x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{x}{2\sqrt{x}\,\left( \sqrt{x} + 1 \right) } \, dx} &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{ (t - 1)^2 }{t} \,dt } \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ \frac{t^2 - 2t + 1}{t}\,dt} \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \int{ t - 2 + \frac{1}{t} \, dt} \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \left( \frac{t^2}{2} - 2t + \ln{|t|} \right) + C \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \frac{t^2}{2} + 2t - \ln{|t|} + C \\ &= x\ln{ \left( \sqrt{x} + 1 \right) } - \frac{ \left( \sqrt{x} + 1 \right) ^2}{2} + 2 \left( \sqrt{x} + 1 \right) - \ln{ \left| \sqrt{x} + 1 \right| } + C \end{align*}
 
Thanks everyone, very helpful
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
4
Views
3K
Replies
3
Views
3K
Replies
5
Views
2K
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 19 ·
Replies
19
Views
4K