Integral with delta and unit step functions in the integrand

  • Thread starter Thread starter Hill
  • Start date Start date
Click For Summary
The integral involving the delta function and the unit step function demonstrates that the presence of the unit step function, θ(k^0), restricts the integration to positive values of k^0, yielding a result of 1/(2ω_k). Without the unit step function, the integral evaluates to twice that value due to the symmetry of the integrand, leading to a result of 1/ω_k. The discussion highlights the importance of the unit step function in eliminating negative contributions from the integral. Additionally, the exercise emphasizes that while the measure d^4k and the expression k^2 - m^2 are Lorentz invariant, the unit step function's dependence on k^0 does not affect its invariance under certain transformations. The conclusion reinforces the necessity of the unit step function in achieving the correct integral evaluation.
Hill
Messages
735
Reaction score
576
Homework Statement
Show that $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\frac 1 {2 \omega_k}$$ where ##\theta(x)## is the unit step function and ##\omega_k \equiv \sqrt {\vec k^2 +m^2}##.
Relevant Equations
##k^2={k^0}^2 - \vec k ^2##
##\omega _k ^2 = \vec k^2 +m^2##
##k^2 - m^2 = {k^0}^2 - \omega_k^2##
##dk^0= \frac {d{k^0}^2} {2k^0}##
##\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0) = \int_{-\infty}^{\infty} \frac {d{k^0}^2} {2k^0} \delta ({k^0}^2 - \omega_k^2) \theta (k^0) = \frac 1 {2 \omega_k} \theta (\omega_k) = \frac 1 {2 \omega_k}##

Wouldn't the result be the same without the unit step function?
 
Physics news on Phys.org
Hill said:
Homework Statement: Show that $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\frac 1 {2 \omega_k}$$ where ##\theta(x)## is the unit step function and ##\omega_k \equiv \sqrt {\vec k^2 +m^2}##.
Relevant Equations: ##k^2={k^0}^2 - \vec k ^2##

##\omega _k ^2 = \vec k^2 +m^2##
##k^2 - m^2 = {k^0}^2 - \omega_k^2##
##dk^0= \frac {d{k^0}^2} {2k^0}##
##\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0) = \int_{-\infty}^{\infty} \frac {d{k^0}^2} {2k^0} \delta ({k^0}^2 - \omega_k^2) \theta (k^0) = \frac 1 {2 \omega_k} \theta (\omega_k) = \frac 1 {2 \omega_k}##

Wouldn't the result be the same without the unit step function?
With the theta function, $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\int_{0}^{\infty} dk^0 \delta (k^2-m^2) $$

Without the theta function, we have $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2)$$ The integrand is an even function of ##k^0##, so $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) = 2\int_{0}^{\infty} dk^0 \delta (k^2-m^2)$$ This is twice the result for the case with the theta function.

I good approach to evaluating the integral is to use property #7 of the delta function listed here.
Property #6 in the list is a special case of #7 and is directly relevant to your integral.
 
TSny said:
With the theta function, $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\int_{0}^{\infty} dk^0 \delta (k^2-m^2) $$

Without the theta function, we have $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2)$$ The integrand is an even function of ##k^0##, so $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) = 2\int_{0}^{\infty} dk^0 \delta (k^2-m^2)$$ This is twice the result for the case with the theta function.

I good approach to evaluating the integral is to use property #7 of the delta function listed here.
Property #6 in the list is a special case of #7 and is directly relevant to your integral.
Thank you very much. I see my mistake now: when replacing ##k^0## with ##\omega_k## I've missed that it can be ##+\omega_k## and ##-\omega_k##. The unit step function eliminates one of them.
 
The last part of that exercise is to show that $$\int \frac {d^3k} {2 \omega_k}$$ is Lorentz invariant.
Using the equation above, I get $$\int \frac {d^3k} {2 \omega_k}=\int {d^3k} \int dk^0 \delta (k^2-m^2) \theta (k^0)= \int d^4k \delta (k^2-m^2) \theta (k^0)$$
Now, ##d^4k## and ##k^2-m^2## are Lorentz invariant, but ##k^0## isn't. What do I miss?
 
Hill said:
The last part of that exercise is to show that $$\int \frac {d^3k} {2 \omega_k}$$ is Lorentz invariant.
Using the equation above, I get $$\int \frac {d^3k} {2 \omega_k}=\int {d^3k} \int dk^0 \delta (k^2-m^2) \theta (k^0)= \int d^4k \delta (k^2-m^2) \theta (k^0)$$
Now, ##d^4k## and ##k^2-m^2## are Lorentz invariant, but ##k^0## isn't. What do I miss?
The step-function ##\theta (k^0)## depends only on the sign of ##k^0## and so is invariant under any Lorentz transform that doesn't include time-reversal.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...