Integral with delta and unit step functions in the integrand

  • Thread starter Thread starter Hill
  • Start date Start date
Hill
Messages
735
Reaction score
575
Homework Statement
Show that $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\frac 1 {2 \omega_k}$$ where ##\theta(x)## is the unit step function and ##\omega_k \equiv \sqrt {\vec k^2 +m^2}##.
Relevant Equations
##k^2={k^0}^2 - \vec k ^2##
##\omega _k ^2 = \vec k^2 +m^2##
##k^2 - m^2 = {k^0}^2 - \omega_k^2##
##dk^0= \frac {d{k^0}^2} {2k^0}##
##\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0) = \int_{-\infty}^{\infty} \frac {d{k^0}^2} {2k^0} \delta ({k^0}^2 - \omega_k^2) \theta (k^0) = \frac 1 {2 \omega_k} \theta (\omega_k) = \frac 1 {2 \omega_k}##

Wouldn't the result be the same without the unit step function?
 
Physics news on Phys.org
Hill said:
Homework Statement: Show that $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\frac 1 {2 \omega_k}$$ where ##\theta(x)## is the unit step function and ##\omega_k \equiv \sqrt {\vec k^2 +m^2}##.
Relevant Equations: ##k^2={k^0}^2 - \vec k ^2##

##\omega _k ^2 = \vec k^2 +m^2##
##k^2 - m^2 = {k^0}^2 - \omega_k^2##
##dk^0= \frac {d{k^0}^2} {2k^0}##
##\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0) = \int_{-\infty}^{\infty} \frac {d{k^0}^2} {2k^0} \delta ({k^0}^2 - \omega_k^2) \theta (k^0) = \frac 1 {2 \omega_k} \theta (\omega_k) = \frac 1 {2 \omega_k}##

Wouldn't the result be the same without the unit step function?
With the theta function, $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\int_{0}^{\infty} dk^0 \delta (k^2-m^2) $$

Without the theta function, we have $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2)$$ The integrand is an even function of ##k^0##, so $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) = 2\int_{0}^{\infty} dk^0 \delta (k^2-m^2)$$ This is twice the result for the case with the theta function.

I good approach to evaluating the integral is to use property #7 of the delta function listed here.
Property #6 in the list is a special case of #7 and is directly relevant to your integral.
 
TSny said:
With the theta function, $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\int_{0}^{\infty} dk^0 \delta (k^2-m^2) $$

Without the theta function, we have $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2)$$ The integrand is an even function of ##k^0##, so $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) = 2\int_{0}^{\infty} dk^0 \delta (k^2-m^2)$$ This is twice the result for the case with the theta function.

I good approach to evaluating the integral is to use property #7 of the delta function listed here.
Property #6 in the list is a special case of #7 and is directly relevant to your integral.
Thank you very much. I see my mistake now: when replacing ##k^0## with ##\omega_k## I've missed that it can be ##+\omega_k## and ##-\omega_k##. The unit step function eliminates one of them.
 
The last part of that exercise is to show that $$\int \frac {d^3k} {2 \omega_k}$$ is Lorentz invariant.
Using the equation above, I get $$\int \frac {d^3k} {2 \omega_k}=\int {d^3k} \int dk^0 \delta (k^2-m^2) \theta (k^0)= \int d^4k \delta (k^2-m^2) \theta (k^0)$$
Now, ##d^4k## and ##k^2-m^2## are Lorentz invariant, but ##k^0## isn't. What do I miss?
 
Hill said:
The last part of that exercise is to show that $$\int \frac {d^3k} {2 \omega_k}$$ is Lorentz invariant.
Using the equation above, I get $$\int \frac {d^3k} {2 \omega_k}=\int {d^3k} \int dk^0 \delta (k^2-m^2) \theta (k^0)= \int d^4k \delta (k^2-m^2) \theta (k^0)$$
Now, ##d^4k## and ##k^2-m^2## are Lorentz invariant, but ##k^0## isn't. What do I miss?
The step-function ##\theta (k^0)## depends only on the sign of ##k^0## and so is invariant under any Lorentz transform that doesn't include time-reversal.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top