Integral with delta and unit step functions in the integrand

  • Thread starter Thread starter Hill
  • Start date Start date
Hill
Messages
735
Reaction score
575
Homework Statement
Show that $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\frac 1 {2 \omega_k}$$ where ##\theta(x)## is the unit step function and ##\omega_k \equiv \sqrt {\vec k^2 +m^2}##.
Relevant Equations
##k^2={k^0}^2 - \vec k ^2##
##\omega _k ^2 = \vec k^2 +m^2##
##k^2 - m^2 = {k^0}^2 - \omega_k^2##
##dk^0= \frac {d{k^0}^2} {2k^0}##
##\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0) = \int_{-\infty}^{\infty} \frac {d{k^0}^2} {2k^0} \delta ({k^0}^2 - \omega_k^2) \theta (k^0) = \frac 1 {2 \omega_k} \theta (\omega_k) = \frac 1 {2 \omega_k}##

Wouldn't the result be the same without the unit step function?
 
Physics news on Phys.org
Hill said:
Homework Statement: Show that $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\frac 1 {2 \omega_k}$$ where ##\theta(x)## is the unit step function and ##\omega_k \equiv \sqrt {\vec k^2 +m^2}##.
Relevant Equations: ##k^2={k^0}^2 - \vec k ^2##

##\omega _k ^2 = \vec k^2 +m^2##
##k^2 - m^2 = {k^0}^2 - \omega_k^2##
##dk^0= \frac {d{k^0}^2} {2k^0}##
##\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0) = \int_{-\infty}^{\infty} \frac {d{k^0}^2} {2k^0} \delta ({k^0}^2 - \omega_k^2) \theta (k^0) = \frac 1 {2 \omega_k} \theta (\omega_k) = \frac 1 {2 \omega_k}##

Wouldn't the result be the same without the unit step function?
With the theta function, $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\int_{0}^{\infty} dk^0 \delta (k^2-m^2) $$

Without the theta function, we have $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2)$$ The integrand is an even function of ##k^0##, so $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) = 2\int_{0}^{\infty} dk^0 \delta (k^2-m^2)$$ This is twice the result for the case with the theta function.

I good approach to evaluating the integral is to use property #7 of the delta function listed here.
Property #6 in the list is a special case of #7 and is directly relevant to your integral.
 
TSny said:
With the theta function, $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\int_{0}^{\infty} dk^0 \delta (k^2-m^2) $$

Without the theta function, we have $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2)$$ The integrand is an even function of ##k^0##, so $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) = 2\int_{0}^{\infty} dk^0 \delta (k^2-m^2)$$ This is twice the result for the case with the theta function.

I good approach to evaluating the integral is to use property #7 of the delta function listed here.
Property #6 in the list is a special case of #7 and is directly relevant to your integral.
Thank you very much. I see my mistake now: when replacing ##k^0## with ##\omega_k## I've missed that it can be ##+\omega_k## and ##-\omega_k##. The unit step function eliminates one of them.
 
The last part of that exercise is to show that $$\int \frac {d^3k} {2 \omega_k}$$ is Lorentz invariant.
Using the equation above, I get $$\int \frac {d^3k} {2 \omega_k}=\int {d^3k} \int dk^0 \delta (k^2-m^2) \theta (k^0)= \int d^4k \delta (k^2-m^2) \theta (k^0)$$
Now, ##d^4k## and ##k^2-m^2## are Lorentz invariant, but ##k^0## isn't. What do I miss?
 
Hill said:
The last part of that exercise is to show that $$\int \frac {d^3k} {2 \omega_k}$$ is Lorentz invariant.
Using the equation above, I get $$\int \frac {d^3k} {2 \omega_k}=\int {d^3k} \int dk^0 \delta (k^2-m^2) \theta (k^0)= \int d^4k \delta (k^2-m^2) \theta (k^0)$$
Now, ##d^4k## and ##k^2-m^2## are Lorentz invariant, but ##k^0## isn't. What do I miss?
The step-function ##\theta (k^0)## depends only on the sign of ##k^0## and so is invariant under any Lorentz transform that doesn't include time-reversal.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top