Integral with delta and unit step functions in the integrand

  • Thread starter Thread starter Hill
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around evaluating integrals involving delta and unit step functions, specifically in the context of relativistic physics. The original poster presents an integral that includes the delta function and the unit step function, questioning the necessity of the latter in the evaluation process.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the implications of including the unit step function in the integral, questioning whether the result would differ without it. They discuss the properties of the delta function and its even nature, leading to considerations of symmetry in the integrals.

Discussion Status

Participants are actively engaging with the problem, raising questions about the role of the unit step function and its effect on the integral's outcome. Some have identified potential mistakes in reasoning regarding the treatment of the delta function and the limits of integration, while others are exploring the implications of Lorentz invariance in the context of the integral.

Contextual Notes

There is a focus on the properties of the delta function and the unit step function, as well as their relevance in the context of relativistic integrals. Participants are also considering the implications of Lorentz invariance and the behavior of the integrand under transformations.

Hill
Messages
792
Reaction score
614
Homework Statement
Show that $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\frac 1 {2 \omega_k}$$ where ##\theta(x)## is the unit step function and ##\omega_k \equiv \sqrt {\vec k^2 +m^2}##.
Relevant Equations
##k^2={k^0}^2 - \vec k ^2##
##\omega _k ^2 = \vec k^2 +m^2##
##k^2 - m^2 = {k^0}^2 - \omega_k^2##
##dk^0= \frac {d{k^0}^2} {2k^0}##
##\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0) = \int_{-\infty}^{\infty} \frac {d{k^0}^2} {2k^0} \delta ({k^0}^2 - \omega_k^2) \theta (k^0) = \frac 1 {2 \omega_k} \theta (\omega_k) = \frac 1 {2 \omega_k}##

Wouldn't the result be the same without the unit step function?
 
Physics news on Phys.org
Hill said:
Homework Statement: Show that $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\frac 1 {2 \omega_k}$$ where ##\theta(x)## is the unit step function and ##\omega_k \equiv \sqrt {\vec k^2 +m^2}##.
Relevant Equations: ##k^2={k^0}^2 - \vec k ^2##

##\omega _k ^2 = \vec k^2 +m^2##
##k^2 - m^2 = {k^0}^2 - \omega_k^2##
##dk^0= \frac {d{k^0}^2} {2k^0}##
##\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0) = \int_{-\infty}^{\infty} \frac {d{k^0}^2} {2k^0} \delta ({k^0}^2 - \omega_k^2) \theta (k^0) = \frac 1 {2 \omega_k} \theta (\omega_k) = \frac 1 {2 \omega_k}##

Wouldn't the result be the same without the unit step function?
With the theta function, $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\int_{0}^{\infty} dk^0 \delta (k^2-m^2) $$

Without the theta function, we have $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2)$$ The integrand is an even function of ##k^0##, so $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) = 2\int_{0}^{\infty} dk^0 \delta (k^2-m^2)$$ This is twice the result for the case with the theta function.

I good approach to evaluating the integral is to use property #7 of the delta function listed here.
Property #6 in the list is a special case of #7 and is directly relevant to your integral.
 
  • Informative
Likes   Reactions: Hill
TSny said:
With the theta function, $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) \theta (k^0)=\int_{0}^{\infty} dk^0 \delta (k^2-m^2) $$

Without the theta function, we have $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2)$$ The integrand is an even function of ##k^0##, so $$\int_{-\infty}^{\infty} dk^0 \delta (k^2-m^2) = 2\int_{0}^{\infty} dk^0 \delta (k^2-m^2)$$ This is twice the result for the case with the theta function.

I good approach to evaluating the integral is to use property #7 of the delta function listed here.
Property #6 in the list is a special case of #7 and is directly relevant to your integral.
Thank you very much. I see my mistake now: when replacing ##k^0## with ##\omega_k## I've missed that it can be ##+\omega_k## and ##-\omega_k##. The unit step function eliminates one of them.
 
The last part of that exercise is to show that $$\int \frac {d^3k} {2 \omega_k}$$ is Lorentz invariant.
Using the equation above, I get $$\int \frac {d^3k} {2 \omega_k}=\int {d^3k} \int dk^0 \delta (k^2-m^2) \theta (k^0)= \int d^4k \delta (k^2-m^2) \theta (k^0)$$
Now, ##d^4k## and ##k^2-m^2## are Lorentz invariant, but ##k^0## isn't. What do I miss?
 
Hill said:
The last part of that exercise is to show that $$\int \frac {d^3k} {2 \omega_k}$$ is Lorentz invariant.
Using the equation above, I get $$\int \frac {d^3k} {2 \omega_k}=\int {d^3k} \int dk^0 \delta (k^2-m^2) \theta (k^0)= \int d^4k \delta (k^2-m^2) \theta (k^0)$$
Now, ##d^4k## and ##k^2-m^2## are Lorentz invariant, but ##k^0## isn't. What do I miss?
The step-function ##\theta (k^0)## depends only on the sign of ##k^0## and so is invariant under any Lorentz transform that doesn't include time-reversal.
 
  • Like
Likes   Reactions: Hill

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
3K
Replies
1
Views
2K
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
7
Views
2K