MHB Integrating $$1-y^2$$: Simplifying Arcsins

  • Thread starter Thread starter NotaMathPerson
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
The integral of (1-y^2)^(1/2) with respect to y can be simplified using trigonometric substitution, where y is replaced by sin(θ). After substitution and applying the double-angle identity for cosine, the integral can be expressed as I = (1/2)(θ + sin(2θ)/2) + C. By back-substituting for θ using arcsin(y), sin(θ), and cos(θ), the final result is I = (1/2)(arcsin(y) + y√(1-y^2)) + C. There is no need to eliminate the arcsin function from the final expression.
NotaMathPerson
Messages
82
Reaction score
0


$$\int(1-y^2)^\frac{1}{2}\,dy$$

I did trig substitution

$$y=\sin\theta$$
$$dy=\cos\theta\,d\theta$$

$$\int(1+\cos2\theta)d\theta$$
$$\arcsin\,y+\frac{1}{2}\sin(2\arcsin\,y)+c$$

How do I get rid of the arcsins?

 
Physics news on Phys.org
After your trig. substitution and appliction of the double-angle identity for cosine, you should have:

$$I=\frac{1}{2}\int 1+\cos(2\theta)\,d\theta=\frac{1}{2}\left(\theta+\frac{1}{2}\sin(2\theta)\right)+C$$

Okay, now at this point we can apply a double-angle identity for sine and state:

$$I=\frac{1}{2}\left(\theta+\sin(\theta)\cos(\theta)\right)+C$$

Okay, now you can back-substitute for $\theta$, observing that:

$$\theta=\arcsin(y)$$

$$\sin(\theta)=y$$

$$\cos(\theta)=\sqrt{1-y^2}$$

And so we find:

$$I=\frac{1}{2}\left(\arcsin(y)+y\sqrt{1-y^2}\right)+C$$

And that's the final answer...no need to "get rid" of the inverse sine function. :D
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
2K
Replies
2
Views
3K
Replies
4
Views
4K