Integrating an exponential function

Click For Summary
The discussion focuses on evaluating the integral of the product of exponential functions over the interval from 0 to 1. For the case where n equals k, the integral evaluates to 1, confirming the functions are orthogonal. In the case where n does not equal k, the integral should yield 0, but there was confusion regarding the application of complex arithmetic. The correct approach involves recognizing that the integral of the complex exponential can be simplified using trigonometric identities, leading to the conclusion that the functions are indeed orthogonal. The participants emphasize the importance of proper handling of complex numbers in calculations.
fishturtle1
Messages
393
Reaction score
82

Homework Statement


Show ##\int_{0}^{1}e_n(x)\overline e_k(x) dx = 1## if ##n=k## and ##0## otherwise.

Homework Equations


##e_n(x) = e^{2\pi inx}##.

The Attempt at a Solution


Consider 2 cases:

case 1: ##n=k##. Then ##\int_{0}^{1} e_n(x) \bar e_k(x) dx = \int_{0}^{1} e_n(x)e_{-k}(x) dx = \int_{0}^{1} e_0(x) dx = \int_{0}^{1} 1 dx = 1(1-0) = 1.##

case 2: ##n \neq k##. Then ##\int_{0}^{1} e_n(x)\bar e_k(x) dx = \int_{0}^{1} e_{n-k}(x) dx = \int_{0}^{1} e^{2\pi i (n-k)}x = \int_{0}^{1} (e^{2\pi i})^{(n-k)x} dx = \int_{0}^{1} 1^{(n-k)x}dx = 1##? Can someone please point out the mistake..

Also this was from lecture notes today:

case 2: ##n \neq k##. In ##L^2([0,1]) = \lbrace f: [0,1] \rightarrow \mathbb{C} \vert \int_{0}^{1} f^2(x) dx < \infty \rbrace## is an Inner Product space and ##<f, g>^2 = \int_{0}^{1} f(x)\bar g(x) dx##. So ##e_n(x)## and ##e_k(x)## are orthonogal.
--end notes--

So that would imply their dot product is 0..

My questions are: Can I please have help on case 2? and reading my notes I am not sure how we get the conclusion ##e_n(x)## and ##e_k(x)## are orthogonal, how do we do this?
 
Physics news on Phys.org
fishturtle1 said:

Homework Statement


Show ##\int_{0}^{1}e_n(x)\overline e_k(x) dx = 1## if ##n=k## and ##0## otherwise.

Homework Equations


##e_n(x) = e^{2\pi inx}##.

The Attempt at a Solution


Consider 2 cases:

case 1: ##n=k##. Then ##\int_{0}^{1} e_n(x) \bar e_k(x) dx = \int_{0}^{1} e_n(x)e_{-k}(x) dx = \int_{0}^{1} e_0(x) dx = \int_{0}^{1} 1 dx = 1(1-0) = 1.##

case 2: ##n \neq k##. Then ##\int_{0}^{1} e_n(x)\bar e_k(x) dx = \int_{0}^{1} e_{n-k}(x) dx = \int_{0}^{1} e^{2\pi i (n-k)}x = \int_{0}^{1} (e^{2\pi i})^{(n-k)x} dx = \int_{0}^{1} 1^{(n-k)x}dx = 1##? Can someone please point out the mistake..
You used arithmetic rules for real numbers and applied them to complex numbers without checking if they were still valid. See https://www.physicsforums.com/insights/things-can-go-wrong-complex-numbers/
Also this was from lecture notes today:

case 2: ##n \neq k##. In ##L^2([0,1]) = \lbrace f: [0,1] \rightarrow \mathbb{C} \vert \int_{0}^{1} f^2(x) dx < \infty \rbrace## is an Inner Product space and ##<f, g>^2 = \int_{0}^{1} f(x)\bar g(x) dx##. So ##e_n(x)## and ##e_k(x)## are orthonogal.
--end notes--

So that would imply their dot product is 0..

My questions are: Can I please have help on case 2? and reading my notes I am not sure how we get the conclusion ##e_n(x)## and ##e_k(x)## are orthogonal, how do we do this?
You get the correct results, if you use ##e^{2\pi i m x}=\cos(2\pi m x)+i \sin(2\pi m x)##.
 
fresh_42 said:
You used arithmetic rules for real numbers and applied them to complex numbers without checking if they were still valid. See https://www.physicsforums.com/insights/things-can-go-wrong-complex-numbers/

You get the correct results, if you use ##e^{2\pi i m x}=\cos(2\pi m x)+i \sin(2\pi m x)##.
Thanks for the reply,

So from the article, i can't do ##\int_0^1 e^{2\pi i (n-k)x} = \int_0^1 (e^{2\pi i})^{(n-k)x} ## because we'd need ##2\pi i## and ##(n-k)x## to be positive and real, and ##2\pi i## is not real.

So for case 2: ##n \neq k##. Let ##l = n-k##. Observe, ##I = \int_0^1 e_n(x)e_k(x) dx = \int_0^1 e_{n-k}(x)dx = \int_0^1 e^{2\pi ilx}dx = \int_0^1 \cos(2\pi ilx) + i\sin(2\pi ilx) dx##. Let ##u = 2\pi ilx##. Then ##du = 2\pi il dx## i.e., ##dx = \frac{du}{2\pi il}##. So, ##\int_{0}^{2\pi il} \frac{\cos(u) + isin(u)}{2\pi il} du = \int_0^{2\pi il}\frac{\cos(u)}{2\pi il} du + \int_0^{2\pi il}\frac{\sin(u)}{2\pi il} du =\frac{\sin(2\pi il) - \sin(0)}{2\pi il} + i\frac{-\cos(2\pi il) - -\cos(0)}{2\pi il} = \frac{0 - 0}{2\pi il} + i \frac{-1 - -1}{2\pi il} = 0## which is the result we wanted.
 
  • Like
Likes fresh_42
fishturtle1 said:

Homework Statement


Show ##\int_{0}^{1}e_n(x)\overline e_k(x) dx = 1## if ##n=k## and ##0## otherwise.

Homework Equations


##e_n(x) = e^{2\pi inx}##.

The Attempt at a Solution


Consider 2 cases:

case 1: ##n=k##. Then ##\int_{0}^{1} e_n(x) \bar e_k(x) dx = \int_{0}^{1} e_n(x)e_{-k}(x) dx = \int_{0}^{1} e_0(x) dx = \int_{0}^{1} 1 dx = 1(1-0) = 1.##

case 2: ##n \neq k##. Then ##\int_{0}^{1} e_n(x)\bar e_k(x) dx = \int_{0}^{1} e_{n-k}(x) dx = \int_{0}^{1} e^{2\pi i (n-k)}x = \int_{0}^{1} (e^{2\pi i})^{(n-k)x} dx = \int_{0}^{1} 1^{(n-k)x}dx = 1##? Can someone please point out the mistake..

Also this was from lecture notes today:

case 2: ##n \neq k##. In ##L^2([0,1]) = \lbrace f: [0,1] \rightarrow \mathbb{C} \vert \int_{0}^{1} f^2(x) dx < \infty \rbrace## is an Inner Product space and ##<f, g>^2 = \int_{0}^{1} f(x)\bar g(x) dx##. So ##e_n(x)## and ##e_k(x)## are orthonogal.
--end notes--

So that would imply their dot product is 0..

My questions are: Can I please have help on case 2? and reading my notes I am not sure how we get the conclusion ##e_n(x)## and ##e_k(x)## are orthogonal, how do we do this?

I know you have already done the question, but for future reference you should realize that for ##n \neq k## you could use the result
$$\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C,$$ with ##a = 2\pi i (n-k)##,
 
Ray Vickson said:
I know you have already done the question, but for future reference you should realize that for ##n \neq k## you could use the result
$$\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C,$$ with ##a = 2\pi i (n-k)##,
Thank you for letting me know, ill keep this in mind for the future.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
1K