MHB Integrating $\cos 2\theta$ and $\tan\theta$

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integrating
Click For Summary
The discussion focuses on two integrals involving trigonometric functions: the first integral involves integrating $\cos 2\theta$ multiplied by the logarithm of a ratio of sine and cosine functions, while the second integral involves $\tan 2\theta$ divided by the square root of a sum of sine and cosine raised to the sixth power. For the first integral, a suggestion is made to use integration by parts after simplifying the logarithmic expression. The second integral's approach involves rewriting the square root expression and simplifying it to facilitate integration. The conversation emphasizes the need for careful manipulation of trigonometric identities to solve these integrals effectively.
juantheron
Messages
243
Reaction score
1
$(1)\;\; \displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta$

$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Similarly My Try for (I) one

$\displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta = \int \cos2 \theta \cdot \ln\left(\frac{1+\tan \theta}{1-\tan \theta}\right)d\theta$

Now How can i solve after that

Help me

Thanks
 
Physics news on Phys.org
For the first one, I would try integration by parts, where:

$$u=\ln\left(\frac{\cos(\theta)+\sin(\theta)}{ \cos(\theta)-\sin(\theta)} \right)=\ln\left(\frac{1+\sin(2\theta)}{ \cos(2\theta)} \right)\,\therefore\,du= \frac{\sin(2\theta)-1}{\sin(2\theta)}$$

$$dv=\cos(2\theta)\,d\theta\,\therefore\,v=\frac{1}{2}\sin(2\theta)$$
 
jacks said:
$(1)\;\; \displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta$

$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Similarly My Try for (I) one

$\displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta = \int \cos2 \theta \cdot \ln\left(\frac{1+\tan \theta}{1-\tan \theta}\right)d\theta$

Now How can i solve after that

Help me

Thanks

No need for integration by parts (at least not until after a great deal of simplification)...

\displaystyle \begin{align*} \frac{\cos{(\theta)} + \sin{(\theta)} }{ \cos{(\theta)} - \sin{(\theta)} } &= \frac{\left[ \cos{(\theta)} + \sin{(\theta)} \right] ^2}{ \left[ \cos{(\theta)} - \sin{(\theta)} \right] \left[ \cos{(\theta)} + \sin{(\theta)} \right] } \\ &= \frac{\cos^2{(\theta)} + 2\sin{(\theta)}\cos{(\theta)} + \sin^2{(\theta)}}{\cos^2{(\theta)} - \sin^2{(\theta)}} \\ &= \frac{1 + \sin{(2\theta)}}{\cos{(2\theta)}} \\ &= \frac{1 + \sin{(2\theta)}}{\sqrt{1 - \sin^2{(2\theta)}}} \end{align*}

So for

\displaystyle \begin{align*} \int{ \cos{(2\theta)} \ln{ \left[ \frac{\cos{(\theta)} + \sin{(\theta)}}{\cos{(\theta)} - \sin{(\theta)}} \right] } \, d\theta} = \frac{1}{2} \int{ 2\cos{(2\theta)}\ln{ \left[ \frac{1 + \sin{(2\theta)}}{\sqrt{1 - \sin^2{(2\theta)}}} \right] }\,d\theta} \end{align*}

Let \displaystyle \begin{align*} x = \sin{(2\theta)} \implies dx = 2\cos{(2\theta)} \, d\theta \end{align*} and the integral becomes

\displaystyle \begin{align*} \frac{1}{2} \int{ \ln{ \left[ \frac{1 + x}{\sqrt{1 - x^2}} \right] }\,dx } &= \frac{1}{2} \int{ \ln{ \left( 1 + x \right) } - \ln{ \left[ \left( 1 - x^2 \right) ^{\frac{1}{2}} \right] } \, dx } \\ &= \frac{1}{2} \int{ \ln{ \left( 1 + x \right) } - \frac{1}{2} \ln{ \left[ \left( 1 - x \right) \left( 1 + x \right) \right] } \, dx } \\ &= \int{ \ln{ \left( 1 + x \right) } - \frac{1}{2}\ln{ \left( 1 - x \right) } - \frac{1}{2} \ln{ \left( 1 + x \right) } \,dx} \\ &= \frac{1}{2} \int{ \frac{1}{2} \ln{ \left( 1 + x \right) } - \frac{1}{2} \ln{ \left( 1 - x \right) } \, dx } \\ &= \frac{1}{4} \int{ \ln{ \left( 1 + x \right) } - \ln{ \left( 1 - x \right) } \, dx} \end{align*}

Both of these integrals should be very easy to evaluate...
 
jacks said:
$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Your approach is a good one, assuming your identities are correct (I haven't checked). From here

\displaystyle \begin{align*} \int{ \frac{2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4\sin^2{(2\theta)}}}\,d\theta} &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4 \left[ 1 - \cos^2{(2\theta)} \right] }}\,d\theta} \\ &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4 + \cos^2{(2\theta)}}}\,d\theta} \\ &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{\cos^2{( 2 \theta )} - 1}}\,d\theta} \end{align*}

Now a substitution of the form \displaystyle \begin{align*} \sec{(x)} = \cos{(2\theta)} \implies \sec{(x)}\tan{(x)}\,dx &= -2\sin{(2\theta)} \end{align*} is appropriate, giving

\displaystyle \begin{align*} -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{\cos^2{(2 \theta )} - 1}}\,d\theta} &= -\int{\frac{\sec{(x)}\tan{(x)}}{\sec{(x)}\sqrt{\sec^2{(x)} - 1}}\,dx} \\ &= -\int{\frac{\tan{(x)}}{\sqrt{\tan^2{(x)}}}\,dx} \\ &= -\int{\frac{\tan{(x)}}{\tan{(x)}}\,dx} \\ &= -\int{1\,dx} \\ &= -x + C \\ &= -\textrm{arsec}\,{\left[ \cos{(2\theta)} \right] } + C \end{align*}
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
Replies
2
Views
3K
Replies
4
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K