Integrating $\cos 2\theta$ and $\tan\theta$

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integrating
Click For Summary

Discussion Overview

The discussion revolves around the integration of two expressions involving trigonometric functions: $\int \cos 2\theta \cdot \ln \left(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta}\right) d\theta$ and $\int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta + \cos^6 \theta}} d\theta$. Participants explore various methods and approaches to solve these integrals, including integration by parts and trigonometric identities.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant suggests using integration by parts for the first integral, proposing $u = \ln\left(\frac{\cos(\theta)+\sin(\theta)}{\cos(\theta)-\sin(\theta)}\right)$ and calculating $du$ and $dv$ accordingly.
  • Another participant rewrites the first integral using trigonometric identities, expressing it in terms of $\sin(2\theta)$ and $\cos(2\theta)$, and suggests a substitution to simplify the integral further.
  • For the second integral, a participant proposes rewriting the denominator $\sqrt{\sin^6 \theta + \cos^6 \theta}$ using trigonometric identities and expresses the integral in terms of $\sin(2\theta)$ and $\cos(2\theta)$.
  • Another participant acknowledges the approach taken for the second integral, affirming the method while expressing uncertainty about the correctness of the identities used.
  • Further elaboration on the second integral includes a substitution involving $\sec(x)$ and transformations leading to a simpler integral form.

Areas of Agreement / Disagreement

Participants express various methods and approaches to tackle the integrals, but there is no consensus on the best method or the correctness of certain identities used. The discussion remains exploratory with multiple competing views on how to proceed with the integration.

Contextual Notes

Some participants' approaches depend on specific trigonometric identities and simplifications that may not be universally accepted or verified within the discussion. There are unresolved steps in the integration processes, particularly regarding the assumptions made about the identities used.

juantheron
Messages
243
Reaction score
1
$(1)\;\; \displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta$

$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Similarly My Try for (I) one

$\displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta = \int \cos2 \theta \cdot \ln\left(\frac{1+\tan \theta}{1-\tan \theta}\right)d\theta$

Now How can i solve after that

Help me

Thanks
 
Physics news on Phys.org
For the first one, I would try integration by parts, where:

$$u=\ln\left(\frac{\cos(\theta)+\sin(\theta)}{ \cos(\theta)-\sin(\theta)} \right)=\ln\left(\frac{1+\sin(2\theta)}{ \cos(2\theta)} \right)\,\therefore\,du= \frac{\sin(2\theta)-1}{\sin(2\theta)}$$

$$dv=\cos(2\theta)\,d\theta\,\therefore\,v=\frac{1}{2}\sin(2\theta)$$
 
jacks said:
$(1)\;\; \displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta$

$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Similarly My Try for (I) one

$\displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta = \int \cos2 \theta \cdot \ln\left(\frac{1+\tan \theta}{1-\tan \theta}\right)d\theta$

Now How can i solve after that

Help me

Thanks

No need for integration by parts (at least not until after a great deal of simplification)...

\displaystyle \begin{align*} \frac{\cos{(\theta)} + \sin{(\theta)} }{ \cos{(\theta)} - \sin{(\theta)} } &= \frac{\left[ \cos{(\theta)} + \sin{(\theta)} \right] ^2}{ \left[ \cos{(\theta)} - \sin{(\theta)} \right] \left[ \cos{(\theta)} + \sin{(\theta)} \right] } \\ &= \frac{\cos^2{(\theta)} + 2\sin{(\theta)}\cos{(\theta)} + \sin^2{(\theta)}}{\cos^2{(\theta)} - \sin^2{(\theta)}} \\ &= \frac{1 + \sin{(2\theta)}}{\cos{(2\theta)}} \\ &= \frac{1 + \sin{(2\theta)}}{\sqrt{1 - \sin^2{(2\theta)}}} \end{align*}

So for

\displaystyle \begin{align*} \int{ \cos{(2\theta)} \ln{ \left[ \frac{\cos{(\theta)} + \sin{(\theta)}}{\cos{(\theta)} - \sin{(\theta)}} \right] } \, d\theta} = \frac{1}{2} \int{ 2\cos{(2\theta)}\ln{ \left[ \frac{1 + \sin{(2\theta)}}{\sqrt{1 - \sin^2{(2\theta)}}} \right] }\,d\theta} \end{align*}

Let \displaystyle \begin{align*} x = \sin{(2\theta)} \implies dx = 2\cos{(2\theta)} \, d\theta \end{align*} and the integral becomes

\displaystyle \begin{align*} \frac{1}{2} \int{ \ln{ \left[ \frac{1 + x}{\sqrt{1 - x^2}} \right] }\,dx } &= \frac{1}{2} \int{ \ln{ \left( 1 + x \right) } - \ln{ \left[ \left( 1 - x^2 \right) ^{\frac{1}{2}} \right] } \, dx } \\ &= \frac{1}{2} \int{ \ln{ \left( 1 + x \right) } - \frac{1}{2} \ln{ \left[ \left( 1 - x \right) \left( 1 + x \right) \right] } \, dx } \\ &= \int{ \ln{ \left( 1 + x \right) } - \frac{1}{2}\ln{ \left( 1 - x \right) } - \frac{1}{2} \ln{ \left( 1 + x \right) } \,dx} \\ &= \frac{1}{2} \int{ \frac{1}{2} \ln{ \left( 1 + x \right) } - \frac{1}{2} \ln{ \left( 1 - x \right) } \, dx } \\ &= \frac{1}{4} \int{ \ln{ \left( 1 + x \right) } - \ln{ \left( 1 - x \right) } \, dx} \end{align*}

Both of these integrals should be very easy to evaluate...
 
jacks said:
$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Your approach is a good one, assuming your identities are correct (I haven't checked). From here

\displaystyle \begin{align*} \int{ \frac{2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4\sin^2{(2\theta)}}}\,d\theta} &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4 \left[ 1 - \cos^2{(2\theta)} \right] }}\,d\theta} \\ &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4 + \cos^2{(2\theta)}}}\,d\theta} \\ &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{\cos^2{( 2 \theta )} - 1}}\,d\theta} \end{align*}

Now a substitution of the form \displaystyle \begin{align*} \sec{(x)} = \cos{(2\theta)} \implies \sec{(x)}\tan{(x)}\,dx &= -2\sin{(2\theta)} \end{align*} is appropriate, giving

\displaystyle \begin{align*} -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{\cos^2{(2 \theta )} - 1}}\,d\theta} &= -\int{\frac{\sec{(x)}\tan{(x)}}{\sec{(x)}\sqrt{\sec^2{(x)} - 1}}\,dx} \\ &= -\int{\frac{\tan{(x)}}{\sqrt{\tan^2{(x)}}}\,dx} \\ &= -\int{\frac{\tan{(x)}}{\tan{(x)}}\,dx} \\ &= -\int{1\,dx} \\ &= -x + C \\ &= -\textrm{arsec}\,{\left[ \cos{(2\theta)} \right] } + C \end{align*}
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K