MHB Integrating $\cos(u)\cos(\sin(u))$

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integrating
Click For Summary
The integral of interest is $$\int\cos\left({\pi t}\right)\cos\left({\sin\left({\pi t}\right)}\right) dt$$, which can be simplified using the substitution $u = \pi t$. This leads to the integral $$\frac{1}{\pi}\int \cos(u)\,du$$, resulting in $$\frac{1}{\pi}\sin(u) + C$$ after integration. Back-substituting gives the final answer as $$I = \frac{1}{\pi}\sin\left(\sin(\pi t)\right) + C$$. The discussion highlights the effectiveness of substitution in solving complex integrals.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\int\cos\left({\pi t}\right)\cos\left({\sin\left({\pi t}\right)}\right) dt$$

Couldn't find a way to simplify this so
$$u=\pi t$$
$$du=\pi \ dt$$

From there?
 
Physics news on Phys.org
karush said:
$$\int\cos\left({\pi t}\right)\cos\left({\sin\left({\pi t}\right)}\right) dt$$

Couldn't find a way to simplify this so
$$u=\pi t$$
$$du=\pi \ dt$$

From there?
First let x = pi t. Then try u = sin(x), du = cos(x) dx

-Dan
 
So does this go to
$$\int\cos\left({u}\right)du $$

My TI nspire returned
$$\frac{\sin\left({\sin\left({\pi t}\right)}\right)}{\pi}+C$$

For the final answer
 
karush said:
So does this go to
$$\int\cos\left({u}\right)du $$

My TI nspire returned
$$\frac{\sin\left({\sin\left({\pi t}\right)}\right)}{\pi}+C$$

For the final answer

Well...what you have after Dan's suggested subs is

$$I=\frac{1}{\pi}\int \cos(u)\,du=\frac{1}{\pi}\sin(u)+C$$

Back-substitute for $u$:

$$I=\frac{1}{\pi}\sin\left(\sin(x)\right)+C$$

Back-substitute for $x$:

$$I=\frac{1}{\pi}\sin\left(\sin(\pi t)\right)+C$$
 
Thanks again
I'm slowly seeing the magic in this
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K