Integrating Fouries series problem

  • Context: MHB 
  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Integrating Series
Click For Summary
SUMMARY

The discussion centers on the Fourier sine series expansion of the Dirac delta function $\delta(x-a)$ within the interval (0, L). The integration of both sides leads to the cosine expansion of the square wave function $f(x)$, which is defined as $f(x) = \begin{cases}0,\; 0\le x < a \\ 1,\; a < 0 < L\end{cases}$. The correct form of the expansion is confirmed to be $f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} \sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} \sin(\frac{n\pi a}{L}) \cos(\frac{n\pi x}{L})$. A minor error in the sign of the result was identified and corrected.

PREREQUISITES
  • Understanding of Fourier series, specifically sine and cosine expansions.
  • Familiarity with the Dirac delta function and its properties.
  • Knowledge of integration techniques in the context of series.
  • Basic grasp of piecewise functions and their representations.
NEXT STEPS
  • Study the properties of the Dirac delta function in signal processing.
  • Explore Fourier series convergence and its implications in signal analysis.
  • Learn about the application of Fourier series in solving boundary value problems.
  • Investigate the relationship between sine and cosine series in periodic functions.
USEFUL FOR

Mathematicians, physicists, and engineers involved in signal processing, wave analysis, and those studying Fourier analysis techniques.

ognik
Messages
626
Reaction score
2
As the 2nd part of a question, we start with the Fourier sin series expansion of dirac delta function $\delta(x-a)$ in the half-interval (0,L), (0 < a < L):

$ \delta(x-a) = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} sin \frac{n \pi x}{L} $

The questions goes on "By integrating both sides of this eqtn from 0 to x, show that the cos expansion of the square wave $ f(x) =\begin{cases}0,\; 0\le x \lt a \\ 1,\; a \lt 0 \lt L\end{cases}$

is $ f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) sin(\frac{n\pi x}{L}) $

But when integrating both sides I get:

$ \int_{0}^{x}\delta(x-a).1 \,dx = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} \int_{0}^{x} sin \frac{n \pi x}{L} \,dx$

$ = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} (\frac{L}{n\pi}) [-cos \frac{n \pi x}{L}]^x_0 $

$ = -\frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) cos(\frac{n\pi x}{L}) $

It looks to me that I am correct, could someone please check this?
 
Physics news on Phys.org
ognik said:
But when integrating both sides I get:

$ \int_{0}^{x}\delta(x-a).1 \,dx = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} \int_{0}^{x} sin \frac{n \pi x}{L} \,dx$

$ = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} (\frac{L}{n\pi}) [-cos \frac{n \pi x}{L}]^x_0 $

$=$ -$\frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) cos(\frac{n\pi x}{L}) $

It looks to me that I am correct, could someone please check this?

The first sign of you result is wrong. It should be $$\frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} \sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} \sin(\frac{n\pi a}{L}) \cos(\frac{n\pi x}{L}) $$
The rest is correct! (Smile)
ognik said:
The questions goes on "By integrating both sides of this eqtn from 0 to x, show that the cos expansion of the square wave $ f(x) =\begin{cases}0,\; 0\le x \lt a \\ 1,\; a \lt 0 \lt L\end{cases}$

is $ f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) sin(\frac{n\pi x}{L}) $
So there must be a typo...
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K