Integration by parts curious question (chem's question at Yahoo Answers)

Click For Summary
SUMMARY

The discussion centers on the integration of the function sin(√x)/√x using integration by parts. The solution is definitively stated as -2cos(√x) + C. The method involves recognizing the integral as an immediate result rather than solely relying on integration by parts, which is demonstrated through the derivation of related integrals. The conversation highlights the importance of understanding the integral's properties before applying integration techniques.

PREREQUISITES
  • Understanding of integration techniques, specifically integration by parts.
  • Familiarity with trigonometric functions and their integrals.
  • Knowledge of substitution methods in calculus.
  • Basic proficiency in handling square roots in integrals.
NEXT STEPS
  • Study the method of integration by parts in detail, focusing on its applications.
  • Explore the derivation and properties of integrals involving trigonometric functions.
  • Learn about substitution techniques in calculus, particularly with square roots.
  • Investigate related integrals such as ∫cos(√x)dx and ∫sin(√x)dx for deeper understanding.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators seeking to enhance their understanding of integration techniques and trigonometric integrals.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:
Hi,

I am doing an integration by parts question but cannot work out how to get the solution. Any help would be greatly appreciated, cheers.

Integrate:

sin(x^1/2)/x^1/2

I know the solution is -2cos(x^1/2) but I do not know how to get to this.

Here is a link to the question:

Integration by parts question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello chem,

We have an inmediate integral: $$\displaystyle\int\frac{\sin x^{1/2}}{x^{1/2}}dx=2\int\frac{\sin x^{1/2}}{2x^{1/2}}dx=2\int\sin x^{1/2}d(x^{1/2})=-2\cos x^{1/2}+C$$ Now, we can use the integration by parts method: $$\left \{ \begin{matrix}u=1\\dv=\frac{\sin x^{1/2}}{x^{1/2}}dx\end{matrix}\right.\Rightarrow \left \{ \begin{matrix}du=0dx\\v=-2\cos x^{1/2}\end{matrix}\right.\Rightarrow\\\int\frac{\sin x^{1/2}}{x^{1/2}}dx=1\cdot\left(-2\cos x^{1/2}\right)+\int 0\;dx=-2\cos x^{1/2}+C$$
 
Fernando Revilla said:
Hello chem,

We have an inmediate integral: $$\displaystyle\int\frac{\sin x^{1/2}}{x^{1/2}}dx=2\int\frac{\sin x^{1/2}}{2x^{1/2}}dx=2\int\sin x^{1/2}d(x^{1/2})=-2\cos x^{1/2}+C$$ Now, we can use the integration by parts method: $$\left \{ \begin{matrix}u=1\\dv=\frac{\sin x^{1/2}}{x^{1/2}}dx\end{matrix}\right.\Rightarrow \left \{ \begin{matrix}du=0dx\\v=-2\cos x^{1/2}\end{matrix}\right.\Rightarrow\\\int\frac{\sin x^{1/2}}{x^{1/2}}dx=1\cdot\left(-2\cos x^{1/2}\right)+\int 0\;dx=-2\cos x^{1/2}+C$$

Clearly You can proceed on this way only if You know a priori that...$$\int \frac{\sin \sqrt{x}}{\sqrt{x}}\ dx = -2\ \cos \sqrt{x} + c\ (1)$$... so that properly specking that is not an integration by parts. Very interesting is using (1) and integration by parts to arrive to an important result. Let's suppose to integrate by parts setting $u=\frac {\sin \sqrt{x}}{\sqrt{x}}$ and $v=1$... $$\int \frac{\sin \sqrt{x}}{\sqrt{x}}\ dx = \sqrt{x}\ \sin \sqrt{x} - \frac{1}{2}\ \int \cos \sqrt{x}\ dx + \frac{1}{2}\ \int \frac{\sin \sqrt{x}}{\sqrt{x}}\ dx\ (2)$$

... and from (1) and (2) You arrive to the result...

$$\int \cos \sqrt{x}\ dx = 2\ (\cos \sqrt{x} + \sqrt{x}\ \sin \sqrt{x}) + c\ (4)$$

In similar way You arrive to...

$$\int \sin \sqrt{x}\ dx = 2\ (\sin \sqrt{x} - \sqrt{x}\ \cos \sqrt{x}) + c\ (3)$$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Clearly You can proceed on this way only if You know a priori that... $$\int \frac{\sin \sqrt{x}}{\sqrt{x}}\ dx = -2\ \cos \sqrt{x} + c\ (1)$$

We don't suppose a priori the value of the given integral. We simply find $v=\displaystyle\int\frac{\sin x^{1/2}}{x^{1/2}}dx=\ldots=-2\cos x^{1/2}$ as an inmediate integral. It is irrelevant if we find it in the first or in the second line.

P.S. At any case, the title 'Integration by parts curious question' is meaningful. :)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K