Integration by parts curious question (chem's question at Yahoo Answers)

Click For Summary

Discussion Overview

The discussion revolves around the integration of the function sin(√x)/√x using integration by parts. Participants explore different approaches to solve the integral and clarify the conditions under which integration by parts can be applied. The conversation includes both direct calculations and theoretical considerations regarding the integral's evaluation.

Discussion Character

  • Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant presents the integral sin(√x)/√x and requests assistance in solving it, noting that the solution is known to be -2cos(√x).
  • Another participant provides a detailed solution using integration by parts, showing the steps leading to -2cos(√x) and asserting that it can be derived directly.
  • A different participant questions the validity of using integration by parts without prior knowledge of the integral's result, suggesting that the method may not be applicable in this case.
  • Further, this participant proposes an alternative approach using integration by parts, leading to a more complex result involving additional integrals.
  • There is a discussion about whether the integral can be considered immediate or if it requires prior knowledge, with some participants emphasizing the importance of understanding the integral's evaluation context.

Areas of Agreement / Disagreement

Participants express differing views on the application of integration by parts in this context. Some assert that it can be used directly, while others argue that prior knowledge of the integral's value is necessary. The discussion remains unresolved regarding the appropriateness of the method used.

Contextual Notes

Participants highlight the dependence on understanding the integral's evaluation and the conditions under which integration by parts is valid. There are unresolved mathematical steps and assumptions regarding the integral's prior knowledge.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:
Hi,

I am doing an integration by parts question but cannot work out how to get the solution. Any help would be greatly appreciated, cheers.

Integrate:

sin(x^1/2)/x^1/2

I know the solution is -2cos(x^1/2) but I do not know how to get to this.

Here is a link to the question:

Integration by parts question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello chem,

We have an inmediate integral: $$\displaystyle\int\frac{\sin x^{1/2}}{x^{1/2}}dx=2\int\frac{\sin x^{1/2}}{2x^{1/2}}dx=2\int\sin x^{1/2}d(x^{1/2})=-2\cos x^{1/2}+C$$ Now, we can use the integration by parts method: $$\left \{ \begin{matrix}u=1\\dv=\frac{\sin x^{1/2}}{x^{1/2}}dx\end{matrix}\right.\Rightarrow \left \{ \begin{matrix}du=0dx\\v=-2\cos x^{1/2}\end{matrix}\right.\Rightarrow\\\int\frac{\sin x^{1/2}}{x^{1/2}}dx=1\cdot\left(-2\cos x^{1/2}\right)+\int 0\;dx=-2\cos x^{1/2}+C$$
 
Fernando Revilla said:
Hello chem,

We have an inmediate integral: $$\displaystyle\int\frac{\sin x^{1/2}}{x^{1/2}}dx=2\int\frac{\sin x^{1/2}}{2x^{1/2}}dx=2\int\sin x^{1/2}d(x^{1/2})=-2\cos x^{1/2}+C$$ Now, we can use the integration by parts method: $$\left \{ \begin{matrix}u=1\\dv=\frac{\sin x^{1/2}}{x^{1/2}}dx\end{matrix}\right.\Rightarrow \left \{ \begin{matrix}du=0dx\\v=-2\cos x^{1/2}\end{matrix}\right.\Rightarrow\\\int\frac{\sin x^{1/2}}{x^{1/2}}dx=1\cdot\left(-2\cos x^{1/2}\right)+\int 0\;dx=-2\cos x^{1/2}+C$$

Clearly You can proceed on this way only if You know a priori that...$$\int \frac{\sin \sqrt{x}}{\sqrt{x}}\ dx = -2\ \cos \sqrt{x} + c\ (1)$$... so that properly specking that is not an integration by parts. Very interesting is using (1) and integration by parts to arrive to an important result. Let's suppose to integrate by parts setting $u=\frac {\sin \sqrt{x}}{\sqrt{x}}$ and $v=1$... $$\int \frac{\sin \sqrt{x}}{\sqrt{x}}\ dx = \sqrt{x}\ \sin \sqrt{x} - \frac{1}{2}\ \int \cos \sqrt{x}\ dx + \frac{1}{2}\ \int \frac{\sin \sqrt{x}}{\sqrt{x}}\ dx\ (2)$$

... and from (1) and (2) You arrive to the result...

$$\int \cos \sqrt{x}\ dx = 2\ (\cos \sqrt{x} + \sqrt{x}\ \sin \sqrt{x}) + c\ (4)$$

In similar way You arrive to...

$$\int \sin \sqrt{x}\ dx = 2\ (\sin \sqrt{x} - \sqrt{x}\ \cos \sqrt{x}) + c\ (3)$$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Clearly You can proceed on this way only if You know a priori that... $$\int \frac{\sin \sqrt{x}}{\sqrt{x}}\ dx = -2\ \cos \sqrt{x} + c\ (1)$$

We don't suppose a priori the value of the given integral. We simply find $v=\displaystyle\int\frac{\sin x^{1/2}}{x^{1/2}}dx=\ldots=-2\cos x^{1/2}$ as an inmediate integral. It is irrelevant if we find it in the first or in the second line.

P.S. At any case, the title 'Integration by parts curious question' is meaningful. :)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K