Integration by Parts: Showing $\ln^n(1-x)$

Click For Summary

Discussion Overview

The discussion revolves around the integral of the form $\int \frac{\ln^{n}(1-x)}{x} \, dx$ for $n > 1$. Participants explore various methods of integration by parts, substitutions, and expansions, focusing on deriving a general formula involving the polylogarithm function.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant presents a formula for the integral using integration by parts, involving the polylogarithm function $\text{Li}_{k+1}(1-x)$ and a summation.
  • Another participant mentions a similar formula they proved, which involves a definite integral from $0$ to $a$ and the use of binomial expansion.
  • A different approach is suggested that involves a reflection substitution $x \to 1-x$ and expanding the denominator as an infinite series, followed by term-by-term integration.
  • Another participant describes their method using a substitution that leads to a binomial expansion, resulting in a sum involving $\text{Li}_{k+1}(a)$.

Areas of Agreement / Disagreement

There is no consensus on a single method or formula, as participants propose different approaches and techniques, indicating multiple competing views on how to tackle the integral.

Contextual Notes

Some methods rely on specific substitutions or expansions that may not be universally applicable. The discussion includes various assumptions about the convergence of series and the validity of the approaches for different values of $n$.

polygamma
Messages
227
Reaction score
0
Integration by parts

By repeatedly integrating by parts show that for $ n >1 $,

$$ \int \frac{\ln^{n}(1-x)}{x} \ dx = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C$$

where $\text{Li}_{n}(x)$ is the polylogarithm function of order $n$.
 
Last edited:
Physics news on Phys.org
This problem didn't' generate much interest. Perhaps it was too boring.$ \displaystyle \int \frac{\ln^{n}(1-x)}{x} \ dx $Let $ \displaystyle u = \ln^{n}(1-x)$ and $ \displaystyle dv = \frac{dx}{x}$.$ = \displaystyle - \ln x \ln^{n}(1-x) + n \int \frac{\ln x \ln^{n-1} (1-x)}{1-x} \ dx $Let $\displaystyle u = \ln^{n-1}(1-x)$ and $\displaystyle dv = \frac{\ln x}{1-x} \ dx$.$ \displaystyle = \ln x \ln^{n}(1-x) + \text{Li}_{2}(1-x) \ln^{n-1}(1-x) + n (n-1) \int \frac{\text{Li}_{2}(1-x) \ln^{n-2}(1-x)}{1-x} \ dx $Let $\displaystyle u = \ln^{n-2}(1-x)$ and $\displaystyle dv = \frac{\text{Li}_{2}(1-x)}{1-x} \ dx $.$ = \displaystyle \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$ \displaystyle - n(n-1)(n-2) \int \frac{\text{Li}_{3} \ln^{n-3} (1-x)}{1-x} \ dx $$ = \displaystyle \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x) $

$ \displaystyle + n(n-1)(n-2) \text{Li}_{4}(1-x) \ln^{n-3}(1-x) + n(n-1)(n-2)(n-3) \int \frac{\text{Li}_{4}(1-x)\ln^{n-4}(1-x)}{1-x} \ dx $$ \displaystyle = \ldots = \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$\displaystyle + \ldots + (-1)^{n} (n-1)! \text{Li}_{n} \ln (1-x) \ dx + (-1)^{n} n! \int \frac{\text{Li}_{n}(1-x)}{1-x} \ dx $$ \displaystyle = \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$ \displaystyle + \ldots + (-1)^{n} (n-1)! \text{Li}_{n} \ln (1-x) \ dx + (-1)^{n-1} n! \text{Li}_{n+1}(1-x) + C $$\displaystyle = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C $But actually you can express it more succinctly since $ \displaystyle \ln x = - \text{Li}_{1}(1-x)$.So $ \displaystyle \int \frac{\ln^{n}(1-x)}{x} \ dx = \sum_{k=0}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C $And it's valid for $n=1$ as well.
 
Last edited:
I proved a similar formula a while back

$$\int^a_0 \frac{\log^n(x)}{1-x}\, dx = \log^n(a) \sum_{k=0}^{n}(-1)^k\frac{ n!}{(n-k)!}\,\frac{\text{Li}_{k+1}(a)}{\log^k(a)} $$

I used the binomial expansion .
 
I'd be inclined to skin this particular transcendental cat slightly differently... Firstly, apply the reflection substitution $$x \to 1-x$$, to obtain

$$\int \frac{\log^n(1-x)}{x}\,dx=\int \frac{(\log x)^n}{(1-x)}\, dx$$Then expand the denominator as an infinite series$$\frac{1}{1-x}=\sum_{k=0}^{\infty}x^k$$

Insert this into the indefinite integral, and then integrate term-by-term...$$\int \frac{\log^n(1-x)}{x}\,dx=\sum_{k=0}^{\infty} \int x^k(\log x)^n\, dx$$
EDIT: You beat me to it, Zaid... I must confess, I never bother with integrals like these in indefinite form, so like you, I did the parametric case... (Cool)
 
Last edited:
Here is how I did it Using a substitution we obtain

$$a\int^{1}_0 \frac{\log^n(ax)}{1-ax}\, dx $$

which can be written as

$$a\int^{1}_0 \frac{\left(\log(a)+\log(x) \right)^n}{1-ax}\, dx $$

Now using that binomial expansion we have

$$a\int^{1}_0 \sum_{k=0}^{n} {n \choose k} \log^{n-k}(a) \log^k(x) \frac{ dx}{1-ax}\, $$

arranging to obtain

$$a \sum_{k=0}^{n}{n \choose k}\log^{n-k}(a)\int^{1}_0 \frac{\log^k(x) }{1-ax}\,dx $$

$$\sum_{k=0}^{n}(-1)^ k {n \choose k}\log^{n-k}(a) \Gamma(k+1) \text{Li}_{k+1}(a) $$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K