MHB Integration by Parts: Showing $\ln^n(1-x)$

polygamma
Messages
227
Reaction score
0
Integration by parts

By repeatedly integrating by parts show that for $ n >1 $,

$$ \int \frac{\ln^{n}(1-x)}{x} \ dx = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C$$

where $\text{Li}_{n}(x)$ is the polylogarithm function of order $n$.
 
Last edited:
Mathematics news on Phys.org
This problem didn't' generate much interest. Perhaps it was too boring.$ \displaystyle \int \frac{\ln^{n}(1-x)}{x} \ dx $Let $ \displaystyle u = \ln^{n}(1-x)$ and $ \displaystyle dv = \frac{dx}{x}$.$ = \displaystyle - \ln x \ln^{n}(1-x) + n \int \frac{\ln x \ln^{n-1} (1-x)}{1-x} \ dx $Let $\displaystyle u = \ln^{n-1}(1-x)$ and $\displaystyle dv = \frac{\ln x}{1-x} \ dx$.$ \displaystyle = \ln x \ln^{n}(1-x) + \text{Li}_{2}(1-x) \ln^{n-1}(1-x) + n (n-1) \int \frac{\text{Li}_{2}(1-x) \ln^{n-2}(1-x)}{1-x} \ dx $Let $\displaystyle u = \ln^{n-2}(1-x)$ and $\displaystyle dv = \frac{\text{Li}_{2}(1-x)}{1-x} \ dx $.$ = \displaystyle \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$ \displaystyle - n(n-1)(n-2) \int \frac{\text{Li}_{3} \ln^{n-3} (1-x)}{1-x} \ dx $$ = \displaystyle \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x) $

$ \displaystyle + n(n-1)(n-2) \text{Li}_{4}(1-x) \ln^{n-3}(1-x) + n(n-1)(n-2)(n-3) \int \frac{\text{Li}_{4}(1-x)\ln^{n-4}(1-x)}{1-x} \ dx $$ \displaystyle = \ldots = \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$\displaystyle + \ldots + (-1)^{n} (n-1)! \text{Li}_{n} \ln (1-x) \ dx + (-1)^{n} n! \int \frac{\text{Li}_{n}(1-x)}{1-x} \ dx $$ \displaystyle = \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$ \displaystyle + \ldots + (-1)^{n} (n-1)! \text{Li}_{n} \ln (1-x) \ dx + (-1)^{n-1} n! \text{Li}_{n+1}(1-x) + C $$\displaystyle = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C $But actually you can express it more succinctly since $ \displaystyle \ln x = - \text{Li}_{1}(1-x)$.So $ \displaystyle \int \frac{\ln^{n}(1-x)}{x} \ dx = \sum_{k=0}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C $And it's valid for $n=1$ as well.
 
Last edited:
I proved a similar forumla a while back

$$\int^a_0 \frac{\log^n(x)}{1-x}\, dx = \log^n(a) \sum_{k=0}^{n}(-1)^k\frac{ n!}{(n-k)!}\,\frac{\text{Li}_{k+1}(a)}{\log^k(a)} $$

I used the binomial expansion .
 
I'd be inclined to skin this particular transcendental cat slightly differently... Firstly, apply the reflection substitution $$x \to 1-x$$, to obtain

$$\int \frac{\log^n(1-x)}{x}\,dx=\int \frac{(\log x)^n}{(1-x)}\, dx$$Then expand the denominator as an infinite series$$\frac{1}{1-x}=\sum_{k=0}^{\infty}x^k$$

Insert this into the indefinite integral, and then integrate term-by-term...$$\int \frac{\log^n(1-x)}{x}\,dx=\sum_{k=0}^{\infty} \int x^k(\log x)^n\, dx$$
EDIT: You beat me to it, Zaid... I must confess, I never bother with integrals like these in indefinite form, so like you, I did the parametric case... (Cool)
 
Last edited:
Here is how I did it Using a substitution we obtain

$$a\int^{1}_0 \frac{\log^n(ax)}{1-ax}\, dx $$

which can be written as

$$a\int^{1}_0 \frac{\left(\log(a)+\log(x) \right)^n}{1-ax}\, dx $$

Now using that binomial expansion we have

$$a\int^{1}_0 \sum_{k=0}^{n} {n \choose k} \log^{n-k}(a) \log^k(x) \frac{ dx}{1-ax}\, $$

arranging to obtain

$$a \sum_{k=0}^{n}{n \choose k}\log^{n-k}(a)\int^{1}_0 \frac{\log^k(x) }{1-ax}\,dx $$

$$\sum_{k=0}^{n}(-1)^ k {n \choose k}\log^{n-k}(a) \Gamma(k+1) \text{Li}_{k+1}(a) $$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top