MHB Integration by Parts: Showing $\ln^n(1-x)$

AI Thread Summary
The discussion focuses on deriving the integral of $\frac{\ln^{n}(1-x)}{x}$ using integration by parts, leading to a formula involving the polylogarithm function $\text{Li}_{n}(x)$. The result shows that for $n > 1$, the integral can be expressed as a sum of terms involving $\ln x$ and polylogarithms, with a constant of integration. Participants also explored alternative methods, including substitutions and series expansions, to approach the integral. The conversation reflects a lack of engagement, possibly due to the perceived complexity or monotony of the topic. Ultimately, the integration by parts technique effectively reveals the relationship between logarithmic functions and polylogarithms in this context.
polygamma
Messages
227
Reaction score
0
Integration by parts

By repeatedly integrating by parts show that for $ n >1 $,

$$ \int \frac{\ln^{n}(1-x)}{x} \ dx = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C$$

where $\text{Li}_{n}(x)$ is the polylogarithm function of order $n$.
 
Last edited:
Mathematics news on Phys.org
This problem didn't' generate much interest. Perhaps it was too boring.$ \displaystyle \int \frac{\ln^{n}(1-x)}{x} \ dx $Let $ \displaystyle u = \ln^{n}(1-x)$ and $ \displaystyle dv = \frac{dx}{x}$.$ = \displaystyle - \ln x \ln^{n}(1-x) + n \int \frac{\ln x \ln^{n-1} (1-x)}{1-x} \ dx $Let $\displaystyle u = \ln^{n-1}(1-x)$ and $\displaystyle dv = \frac{\ln x}{1-x} \ dx$.$ \displaystyle = \ln x \ln^{n}(1-x) + \text{Li}_{2}(1-x) \ln^{n-1}(1-x) + n (n-1) \int \frac{\text{Li}_{2}(1-x) \ln^{n-2}(1-x)}{1-x} \ dx $Let $\displaystyle u = \ln^{n-2}(1-x)$ and $\displaystyle dv = \frac{\text{Li}_{2}(1-x)}{1-x} \ dx $.$ = \displaystyle \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$ \displaystyle - n(n-1)(n-2) \int \frac{\text{Li}_{3} \ln^{n-3} (1-x)}{1-x} \ dx $$ = \displaystyle \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x) $

$ \displaystyle + n(n-1)(n-2) \text{Li}_{4}(1-x) \ln^{n-3}(1-x) + n(n-1)(n-2)(n-3) \int \frac{\text{Li}_{4}(1-x)\ln^{n-4}(1-x)}{1-x} \ dx $$ \displaystyle = \ldots = \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$\displaystyle + \ldots + (-1)^{n} (n-1)! \text{Li}_{n} \ln (1-x) \ dx + (-1)^{n} n! \int \frac{\text{Li}_{n}(1-x)}{1-x} \ dx $$ \displaystyle = \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$ \displaystyle + \ldots + (-1)^{n} (n-1)! \text{Li}_{n} \ln (1-x) \ dx + (-1)^{n-1} n! \text{Li}_{n+1}(1-x) + C $$\displaystyle = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C $But actually you can express it more succinctly since $ \displaystyle \ln x = - \text{Li}_{1}(1-x)$.So $ \displaystyle \int \frac{\ln^{n}(1-x)}{x} \ dx = \sum_{k=0}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C $And it's valid for $n=1$ as well.
 
Last edited:
I proved a similar forumla a while back

$$\int^a_0 \frac{\log^n(x)}{1-x}\, dx = \log^n(a) \sum_{k=0}^{n}(-1)^k\frac{ n!}{(n-k)!}\,\frac{\text{Li}_{k+1}(a)}{\log^k(a)} $$

I used the binomial expansion .
 
I'd be inclined to skin this particular transcendental cat slightly differently... Firstly, apply the reflection substitution $$x \to 1-x$$, to obtain

$$\int \frac{\log^n(1-x)}{x}\,dx=\int \frac{(\log x)^n}{(1-x)}\, dx$$Then expand the denominator as an infinite series$$\frac{1}{1-x}=\sum_{k=0}^{\infty}x^k$$

Insert this into the indefinite integral, and then integrate term-by-term...$$\int \frac{\log^n(1-x)}{x}\,dx=\sum_{k=0}^{\infty} \int x^k(\log x)^n\, dx$$
EDIT: You beat me to it, Zaid... I must confess, I never bother with integrals like these in indefinite form, so like you, I did the parametric case... (Cool)
 
Last edited:
Here is how I did it Using a substitution we obtain

$$a\int^{1}_0 \frac{\log^n(ax)}{1-ax}\, dx $$

which can be written as

$$a\int^{1}_0 \frac{\left(\log(a)+\log(x) \right)^n}{1-ax}\, dx $$

Now using that binomial expansion we have

$$a\int^{1}_0 \sum_{k=0}^{n} {n \choose k} \log^{n-k}(a) \log^k(x) \frac{ dx}{1-ax}\, $$

arranging to obtain

$$a \sum_{k=0}^{n}{n \choose k}\log^{n-k}(a)\int^{1}_0 \frac{\log^k(x) }{1-ax}\,dx $$

$$\sum_{k=0}^{n}(-1)^ k {n \choose k}\log^{n-k}(a) \Gamma(k+1) \text{Li}_{k+1}(a) $$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top