For the first integral,using integration by parts,we get:$$\int_0^{\frac{1}{8}} y \tan(8y)dy = \int_0^{\frac{1}{8}} \frac{y}{8}(-\ln(\cos(8y))'dy=-[\frac{y}{8} \ln(\cos(8y))]_0^{\frac{1}{8}}+ \int_0^{\frac{1}{8}} \frac{1}{8} \ln {\cos(8y)} dy=\int_0^{\frac{1}{8}} \frac{1}{8} \ln {\cos(8y)}dy$$
I think that there isn't a simple way,calculating the integral:
$\int_0^{\frac{1}{8}} \frac{1}{8} \ln {\cos(8y)}dy$
Maybe you could use the formula:
$$\int_0^{\frac{1}{a}} \ln cos(ay)dy = \frac{i}{2a} - \frac{\ln 2}{ a} - \frac{i}{2a} (Li_2(-e^{-2i}) -Li_2(-1)) $$
where Li is the Polylogarithm,see Wikipedia:
Polylogarithm - Wikipedia, the free encyclopedia