MHB Integration by parts, why is this allowed?

Click For Summary
Integration by parts allows for the selection of functions u and dv from the integral, where u is typically a function to differentiate and dv is a function to integrate. In the example of integrating ln(x), u is set as ln(x) and dv as dx, leading to du being 1/x dx and v being x. The key point is that while dv must be part of the original integral, v does not need to appear in the original equation. This flexibility is what makes integration by parts a powerful technique in calculus. Understanding this principle clarifies the legality of the chosen functions in the integration process.
find_the_fun
Messages
147
Reaction score
0
I'm following this example where it is asked to integrate [math]\int \ln{x} dx[/math] using integration by parts. I don't understand how it's legal to set v=x since the only x in the equation is the argument of ln and that's already accounted for by u.
 
Physics news on Phys.org
Re: integration by parts, why is this allowed?

We are actually setting:

$$u=\ln(x)\,\therefore\,du=\frac{1}{x}\,dx$$

$$dv=dx\,\therefore\,v=x$$
 
Re: integration by parts, why is this allowed?

MarkFL said:
We are actually setting:

$$u=\ln(x)\,\therefore\,du=\frac{1}{x}\,dx$$

$$dv=dx\,\therefore\,v=x$$

Ok I think I get it. So with integration by parts you choose dv before you calculate v? In other words dv has to be part of the original equation but v does not?
 
Re: integration by parts, why is this allowed?

find_the_fun said:
Ok I think I get it. So with integration by parts you choose dv before you calculate v? In other words dv has to be part of the original equation but v does not?

Correct...integration by parts states:

$$\int u\,dv=uv-\int v\,du$$

So, you want to choose a $u$ and a $dv$, and then from these compute $du$ and $v$.
 
Any time you use "integration by parts",
\int udv= uv- \int v du, there is NO "v" in the original integral. You get it by your choice of "dv".

Here, the choice is dv= dx, u= ln(x).
 
If it helps you can think of

$$\int \ln(x) dx = \int \left(1 \times \ln(x) \right)dx$$

Then you can set $$\frac{dv}{dx} = 1$$ and $$u = \ln(x)$$
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K