MHB Integration Doubt: Answers & Solutions

  • Thread starter Thread starter DaalChawal
  • Start date Start date
  • Tags Tags
    Doubt Integration
Click For Summary
The discussion focuses on simplifying a complex integrand involving logarithmic and exponential functions. A proposed simplification reveals a clearer structure, making it easier to analyze. Despite efforts to apply differentiation and substitution methods, further progress in solving the integral remains elusive. Participants express uncertainty about the next steps in the integration process. The conversation highlights the challenges of tackling intricate mathematical expressions effectively.
DaalChawal
Messages
85
Reaction score
0
1624804251643.png
 
Physics news on Phys.org
It might be worth simplifying the integrand...

$\displaystyle \begin{align*} \frac{\ln{\left( \mathrm{e}\,x^{x+1} \right)} + \left[ \ln{ \left( x^{\sqrt{x}} \right) } \right]^2 }{1 + x\ln{ \left( x \right) } \ln{ \left( \mathrm{e}^x\,x^x \right) }} &= \frac{ \ln{\left( \mathrm{e} \right) } + \ln{ \left( x^{x+1} \right) } + \left[ \sqrt{x} \, \ln{ \left( x \right) } \right] ^2 }{ 1 + x\ln{ \left( x \right) } \left[ \ln{\left( \mathrm{e}^x \right) } + \ln{ \left( x^x \right) } \right] } \\ &= \frac{ 1 + \left( x + 1 \right) \ln{ \left( x \right) } + x \, \left[ \ln{ \left( x \right) } \right] ^2 }{ 1 + x \ln{ \left( x \right) } \left[ x + x\ln{ \left( x \right) } \right] } \end{align*}$

I don't know if this helps, but it looks simpler at least...
 
I also reached this step I tried to create differentiation inside and used substitution too but could not solve it further.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K