Integration Doubt: Answers & Solutions

  • #1
87
0
1624804251643.png
 
  • #2
It might be worth simplifying the integrand...

$\displaystyle \begin{align*} \frac{\ln{\left( \mathrm{e}\,x^{x+1} \right)} + \left[ \ln{ \left( x^{\sqrt{x}} \right) } \right]^2 }{1 + x\ln{ \left( x \right) } \ln{ \left( \mathrm{e}^x\,x^x \right) }} &= \frac{ \ln{\left( \mathrm{e} \right) } + \ln{ \left( x^{x+1} \right) } + \left[ \sqrt{x} \, \ln{ \left( x \right) } \right] ^2 }{ 1 + x\ln{ \left( x \right) } \left[ \ln{\left( \mathrm{e}^x \right) } + \ln{ \left( x^x \right) } \right] } \\ &= \frac{ 1 + \left( x + 1 \right) \ln{ \left( x \right) } + x \, \left[ \ln{ \left( x \right) } \right] ^2 }{ 1 + x \ln{ \left( x \right) } \left[ x + x\ln{ \left( x \right) } \right] } \end{align*}$

I don't know if this helps, but it looks simpler at least...
 
  • #3
I also reached this step I tried to create differentiation inside and used substitution too but could not solve it further.
 

Suggested for: Integration Doubt: Answers & Solutions

Replies
3
Views
432
Replies
10
Views
2K
Replies
5
Views
635
Replies
3
Views
1K
Replies
12
Views
1K
Replies
1
Views
945
Replies
1
Views
2K
Replies
4
Views
496
Replies
2
Views
673
Back
Top