Integration of 1/2 sin y dy from 0 to pi/2: Solution

  • Thread starter Thread starter ilikeicetea
  • Start date Start date
  • Tags Tags
    Integration Sine
Click For Summary
SUMMARY

The integration of 1/2 sin y dy from 0 to π/2 results in 1/2. The correct evaluation involves applying the integral formula for sin y, which is -cos y. The calculation should be performed as follows: (1/2)[-cos(π/2) - (-cos(0))] = (1/2)[0 + 1] = 1/2. A common error noted in the discussion was using a calculator in degree mode instead of radian mode, leading to incorrect results.

PREREQUISITES
  • Understanding of definite integrals
  • Knowledge of trigonometric functions, specifically sine and cosine
  • Familiarity with integration techniques
  • Ability to convert between radians and degrees
NEXT STEPS
  • Study the properties of definite integrals
  • Learn about trigonometric identities and their applications in integration
  • Practice integration of various trigonometric functions
  • Explore the differences between radian and degree measurements in trigonometry
USEFUL FOR

Students studying calculus, particularly those focusing on integration techniques, as well as educators looking to clarify common misconceptions in trigonometric integration.

ilikeicetea
Messages
4
Reaction score
0

Homework Statement


what is the integration of 1/2 sin y dy from 0 to pie/2


Homework Equations


i know sin y = -cos y (integration)



The Attempt at a Solution


from 1/2 sin y dy to (1/2) -cos y then i plot pie/2 and 0
i got (1/2) [-cos (pie/2) - (-cos 0)] = 0, but the answer is 1/2
i mean -cos (pie/2) = -1 & cos 0 = 1

Thank you for helping
 
Physics news on Phys.org
ilikeicetea said:

Homework Statement


what is the integration of 1/2 sin y dy from 0 to pie/2


Homework Equations


i know sin y = -cos y (integration)



The Attempt at a Solution


from 1/2 sin y dy to (1/2) -cos y then i plot pie/2 and 0
Error in next line. BTW, the name of the Greek letter is pi, not pie. Pie is something you can eat.
(1/2)[-cos (pi/2) - (-cos 0)] != 0
ilikeicetea said:
i got (1/2) [-cos (pie/2) - (-cos 0)] = 0, but the answer is 1/2
i mean -cos (pie/2) = -1 & cos 0 = 1

Thank you for helping
 
i forgot to add this, I am trying to find out why the answer is 1/2 and not 0.
 
See post 2. I identified the line where you went wrong.
 
but i though the integration of sin y is -cos y?
 
I'm not questioning that. Did you read post 2?
 
integration of 1/2sin(y) dy from 0 to pie/2=1/2[-cos(y)] from 0 to pie/2
=1/2{-cos(pie/2)-[-cos(0)]}
=1/2{0+1}
=1/2 [bcoz cos(0)=1 & cos(pie/2)=0]



:smile:
 
k, i got it, i put cos (pi/2) in my calculator but came out to be .9996, so that's why i didn't get the right answer.

edit. just know why, cause i have the mode under deg so that's why my answer is all mess up.

thanks everybody
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K