MHB Integration of separate variables

Milly
Messages
21
Reaction score
0
Liquid is flowing into a small tank which has a leak. Initially the tank is empty and, t minutes later, the volume of liquid in the tank is V cm3 . The liquid is flowing into the tank at a constant rate of 80 cm3 per minute. Because of the leak, liquid is being lost from the tank at a rate which, at any instant, is equal to kV cm3 per minute where k is a positive constant.

The equation becomes dv/dt=80−kv but why can't I use dv(gain)/dt = 80 and dv(lost)/dt = kv intergrate both equation and minus V(lost) from V(gain) to get V ?
 
Physics news on Phys.org
Milly said:
Liquid is flowing into a small tank which has a leak. Initially the tank is empty and, t minutes later, the volume of liquid in the tank is V cm3 . The liquid is flowing into the tank at a constant rate of 80 cm3 per minute. Because of the leak, liquid is being lost from the tank at a rate which, at any instant, is equal to kV cm3 per minute where k is a positive constant.

The equation becomes dv/dt=80−kv but why can't I use dv(gain)/dt = 80 and dv(lost)/dt = kv intergrate both equation and minus V(lost) from V(gain) to get V ?

Hi Milly! :)

You could, but then you need another DE since your second DE depends on v, which is different from v(lost).

You would need the additional equation dv = dv(gain) - dv(lost) to complete the set of differential equations.
Then, when you make the proper substitutions, you'll get dv/dt=80−kv.
 
What is DE?
 
Milly said:
What is DE?

DE stands for differential equation.
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
13
Views
3K
Replies
1
Views
12K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
12K
  • · Replies 10 ·
Replies
10
Views
4K