Wherever I look on the internet it says that sinx/x cannot be integrated by elementary techniques, but it seems that there is a method using integration by parts of the quotient rule. However, when I compute definite integrals with this, the answer that my calculator returns is different than the answer I get with the definite integral. Can anyone tell me where my problem is or if my method does actually work.(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x)-g'(x)f(x)}{g^2(x)}[/tex]

[tex]\frac{f(x)}{g(x)}=\int \frac{f'(x)g(x)}{g^2(x)}\,dx-\int \frac{g'(x)f(x)}{g^2(x)}\,dx[/tex]

[tex]\int \frac{g'(x)f(x)}{g^2(x)}\,dx=\int \frac{f'(x)}{g(x)}\,dx-\frac{f(x)}{g(x)}\,dx[/tex]

[tex]\int \frac{sin(x)}{x}\,dx=\int \frac{xsin(x)}{x^2}\,dx=\frac{1}{2}\int \frac{2xsin(x)}{x^2}\,dx[/tex]

[tex]g(x)=x^2[/tex]

[tex]f(x)=sin(x)[/tex]

[tex]g'(x)=2x[/tex]

[tex]f'(x)=cos(x)[/tex]

[tex]\int \frac{g'(x)f(x)}{g^2(x)}\,dx=\int \frac{f'(x)}{g(x)}\,dx-\frac{f(x)}{g(x)}\,dx[/tex]

[tex]\frac{1}{2}\int \frac{2xsin(x)}{x^2}\,dx=\frac{1}{2}\int \frac{cos(x)}{x}\,dx-\frac{sin(x)}{x}\,dx[/tex]

[tex]\int \frac{cos(x)}{x}\,dx=\frac{1}{2}\int \frac{2xcos(x)}{x^2}\,dx[/tex]

[tex]\frac{1}{2}\int \frac{2xcos(x)}{x^2}\,dx=\frac{1}{2}\int \frac{-sin(x)}{x}\,dx-\frac{1}{2}\frac{cos(x)}{x}\,dx[/tex]

[tex]\frac{1}{2}\int \frac{2xcos(x)}{x^2}\,dx=\frac{1}{2}\int \frac{-sin(x)}{x}\,dx-\frac{1}{2}\frac{cos(x)}{x}\,dx[/tex]

[tex]\int \frac{sin(x)}{x}\,dx=\frac{1}{2}\left(\frac{1}{2} \int \frac{-sin(x)}{x} \,dx - \frac{1}{2}\frac{cos(x)}{x}\right)-\frac{1}{2}\frac{sin(x)}{x}[/tex]

[tex]\frac{5}{4}\int \frac{sin(x)}{x}\,dx=-\frac{1}{4}\frac{cos(x)}{x}-\frac{1}{2}\frac{sin(x)}{x}[/tex]

[tex]\int \frac{sin(x)}{x}\,dx=-\frac{1}{5}\frac{cos(x)}{x}-\frac{2}{5}\frac{sin(x)}{x}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integration of sinx/x

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**