When we integrate a scalar map over a manifold M, what exactly are we measuring?(adsbygoogle = window.adsbygoogle || []).push({});

If M is the unit circle in R^2, then regular Riemann integration of the function f = 1 over it will yield the volume of a cylinder of height 1. Okay, no problem.

Now, if we integrate f = 1 over the unit circle in R^2 using the definition of the "integral of a scalar map over a manifold" then I get for my answer 2pi.

If f = 2, then I get 2*2pi = 4pi.

What exactly are we measuring here? I'm very confused.

EDIT: Ok, I know that if we integrate f = 1 over the manifold M (which in our example is the unit circle), then we are just measuring the 1-dimensional volume of M, which is its length. So no problem there. But what about f = 2? This gives us an answer of 2*2pi = 4pi, so what is that that we are measuring? The circumference of the circle if we go twice around it?

What about the function f(x,y) = x^2 integrated (using the definition of integration over manifolds) over the unit circle? Whatever the answer may be, and I can certainly calculate it, what will that measure?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integration over manifold, please help!

**Physics Forums | Science Articles, Homework Help, Discussion**