paulmdrdo1
- 382
- 0
what technique should I use here?
∫dx/1+e^x
∫csc^4x dx/cot^2x
∫cos^7 2x dx
∫dx/1+e^x
∫csc^4x dx/cot^2x
∫cos^7 2x dx
Hello Paul,paulmdrdo said:what technique should I use here?
∫dx/1+e^x
∫csc^4x dx/cot^2x
∫cos^7 2x dx
Petrus said:Hello Paul,
For the first one I asume you mean
$$\int\frac{dx}{1+e^x}$$
start with multiply both side with $$e^x$$ so we got:
$$\int\frac{e^x}{e^x(1+e^x)}dx$$
subsitute $$u=e^x+1 <=> du=e^xdx$$
so our integrate become
$$\int \frac{du}{(u-1)u}$$
I leave the partial fraction to you:)
For the rest I need to think more...
Regards,
$$|\pi\rangle$$
Hello Paul,paulmdrdo said:is this correct?
1/(u*(u-1)) = 1/(u-1) + 1/u
ln(u-1) + ln(u) + c
= ln(e^x) + ln(e^x+1) + c
= x + ln(e^x+1) + c.
ZaidAlyafey said:You missed a sign in the partial fraction .
Here is an another way to do it
$$\frac{1}{1+e^x}= \frac{1+e^x -e^x}{1+e^x} = 1-\frac{e^x}{1+e^x}$$
Now you realize that the numerator is the derivative of the denominator , can you finish now ?
paulmdrdo said:i have a feeling that this correct. is it?
=>∫(e^x+1)/e^x+1) dx - ∫e^x dx /(e^x+1)
=>∫dx - ∫d(e^x+1)/e^x+1
=>x - ln(e^x+1) + c
Amazing(Clapping)(I never think like that...)ZaidAlyafey said:$$\frac{1}{1+e^x}= \frac{1+e^x -e^x}{1+e^x} = 1-\frac{e^x}{1+e^x}$$
your third and fourth step I did not understandZaidAlyafey said:$$\Large \frac{\csc^4x}{\cot^2x} = \frac{\frac{1}{\sin^4 x}}{\frac{\cos^2 x}{\sin^2 x}} = \frac{1}{\sin^2 x \, \cos^2 x} =\frac{\sin^2 x + \cos^2 x }{\sin^2 x \, \cos^2 x} = \sec^2 x + \csc^2 x $$
Petrus said:$$\frac{1}{\sin^2 x \, \cos^2 x} =\frac{\sin^2 x + \cos^2 x }{\sin^2 x \, \cos^2 x}$$
How does that work?
Hey Zaid,ZaidAlyafey said:$$1= \sin^2 x + \cos^2 x $$
I substituted instead of $$1$$ in the numerator the term $$ \sin^2 x + \cos^2 x $$.