Undergrad Interaction Term in EM Lagrangian - Explained

Anypodetos
Messages
17
Reaction score
1
The (classical, relativistic) Lagrangian for electrodynamics contains the field energy density -FμνFμν/4 and the interaction term -Aμjμ. I understand the maths of that - for one thing, the equations of motion turn out right if you plug this into the Euler Lagrange equantion.
Now I recall having learned that you can explain the forces between charged particles solely with the field energy: pushing 2 electrons together increases field energy because it goes with the square of the field strength, and pushing an electron and a positron together decreases field energy. If this is true, why do we need the interaction term at all? What am I missing?
 
Physics news on Phys.org
If you do not have an interaction term, the charges do not generate a non-zero electromagnetic field.

Furthermore, it is worth noting that you are considering the static limit when you are doing that type of calculation.
 
  • Like
Likes Anypodetos
Perfect answer, thanks! Makes me feel a bit stupid, though.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K