MHB Intermediate Value Thm for Five-Point Formula

kalish1
Messages
79
Reaction score
0
I have a specific, for-learning-sake-only question on how the author of this link:

http://www.math.ucla.edu/~yanovsky/Teaching/Math151A/hw5/Hw5_solutions.pdf

gets past the details of the Intermediate Value Theorem on the following paragraph. If someone could fill in the details for me, it would be greatly appreciated because I'm having a hard time understanding.

$$\begin{align}
\left(\frac{3}{12h}f^{(5)}(\xi_1)+\frac{18}{12h}f^{(5)}(\xi_2)-32\frac{6}{12h}f^{(5)}(\xi_3)+243\frac{1}{12h}f^{(5)}(\xi_4)\right)\frac{h^5}{120}&= \\
\left(\frac{3}{12}f^{(5)}(\xi_1)+\frac{18}{12}f^{(5)}(\xi_2)-32\frac{6}{12}f^{(5)}(\xi_3)+243\frac{1}{12}f^{(5)}(\xi_4)\right)\frac{h^4}{120}&= \\
6f^{(5)}(\xi)\frac{h^4}{120}&= \\
\frac{h^4}{20}f^{(5)}(\xi)
\end{align}$$

"Note that the IVT was used above..."

Shouldn't it be

"Suppose $f^{(5)}$ is continuous on $[x_0-h,x_0+3h]$ with
$x_0-h < \xi_1<x_0<\xi_2<x_0+h<\xi_3<x_0+2h<\xi_4<x_0+3h.$ Since $\frac{1}{4}[f^{(5)}(\xi_1)+f^{(5)}(\xi_2)+f^{(5)}(\xi_3)+f^{(5)}(\xi_4)]$ is between $f^{(5)}(\xi_1)$ and $f^{(5)}(\xi_4)$, the Intermediate Value Theorem implies that a number $\xi$ exists between $\xi_1$ and $\xi_4$, and hence in $(x_0-h,x_0+3h)$, with $f^{(5)}(\xi)=\frac{1}{4}[f^{(5)}(\xi_1)+f^{(5)}(\xi_2)+f^{(5)}(\xi_3)+f^{(5)}(\xi_4)]$"?
 
Mathematics news on Phys.org
Hi kalish,

Here's a friendly reminder about this part of Rule #2 here on MHB.

Snippet from MHB Rule #2 said:
As a courtesy, if you post your problem on multiple websites, and you get a satisfactory response on a different website, indicate in your MHB thread that you got an answer elsewhere so that our helpers do not duplicate others' efforts.

As a courtesy (not just to us, but also to those on other sites as well), you should inform our (and their) members when you've posted a question on multiple sites (for instance, I see that you've asked this same question on math.stackexchange) and then inform us if you find a solution elsewhere. This way, no one's efforts are duplicated and/or put to waste on solving a problem that has been potentially solved. (Smile)
 
Chris L T521 said:
Hi kalish,

Here's a friendly reminder about this part of Rule #2 here on MHB.
As a courtesy (not just to us, but also to those on other sites as well), you should inform our (and their) members when you've posted a question on multiple sites (for instance, I see that you've asked this same question on math.stackexchange) and then inform us if you find a solution elsewhere. This way, no one's efforts are duplicated and/or put to waste on solving a problem that has been potentially solved. (Smile)

Thanks Chris. I decided that this problem was unnecessary because the goal I am trying to achieve doesn't actually make sense. So I would like to close this post.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
48
Views
11K
2
Replies
93
Views
14K
4
Replies
175
Views
25K
2
Replies
86
Views
13K
Back
Top