Question 4
Self-adjoint linear operator's eigenvalues are real
$$ \lambda (x,x) = (\lambda x, x) = (Ax,x) = (x, Ax) = (x,\lambda x,) = \bar \lambda (x,x) $$ However, in the Euclidean space ## (x,x) =0 ## follows ##x = 0##, so ## \lambda = \bar \lambda##.
The eigenvectors belonging to different eigenvalues are orthogonal
$$ (Ax, Ay) = (AAx, y) = (\lambda _1 Ax, y) = \lambda_1^2(x,y) $$ $$ (Ax, Ay) = (x, AAy) = (x, \lambda _2 Ay) = \lambda_2^2(x,y) $$ Because
##\lambda_1## and ## \lambda_2## is different, so ## (x,y)## is equal to ##0##.
The spectrum of the ##T_g## operator is the interval ##[m,M]##
The
regular values of the operator
##T_g## are the ##\lambda## numbers for which the ##(T_g-\lambda I)^{-1}## operator has a value in the whole space. The other values of ##\lambda## are the
spectrum of the operator. The
inverse operator is defined by the following formula: $$ (T_g-\lambda I)^{-1} f(t) = \frac 1 {g(t) -\lambda} f(t). $$ It must be proved that for each number ## \lambda## in interval
##[m,M]##, there is an ##s(t)##element of space ## L^2([0,1])##, that is not mapped to an element of space ## L^2([0,1])\,## by the above inverse operator. It follows from the continuity of the ##g(t)## function that if ##\lambda## is a point in the
##[m, M]## interval, then ##g (t) = \lambda## on some ##t_{\lambda}##. Also, provided that ##\lambda## is different from ##m##, there is in the
##[0,1]## interval a ## t_1, t_2, \dots, t_i, \dots ## monotone growing sequence that if ## t_i \leq t \lt t_{\lambda}##, then $$\frac 1 {|g(t) - \lambda|} \gt i.$$ If ##\lambda = m##, there is a similar monotone descending sequence. The appropriate ##s(t)\,##element of ## L^2([0,1])\,## is constructed as follows.
The value of the function ##s(t)## on the ##[t_i, t_{i+1})## interval is $$ \frac 1 {i\sqrt {t_{i+1} - t_i}}. $$ At points outside
all ##(t_i, t_{i+1})## intervals ##s(t)## is ##0## everywhere. The integral of the ##s^2 (t) ## function is equal $$ \sum_{i=1}^\infty {(t_{i+1} - t_i)} {\left( \frac 1 {i \sqrt {t_{i+1} - t_i}} \right)^2} = \sum_{n=1}^\infty \frac 1 {i^2}.$$ However, for each ##(t_i, t_{i+1})## interval, the $$S(t) = \frac 1 {g(t) -\lambda} s(t) $$ function is greater than ## i s(t)##, therefore, therefore ##S^2(t)## integral is divergent, thus the transformed function cannot belong to space ## L^2([0,1])\,##.
At points outside
##[m,M]## interval ##\lambda## values are regular. The values of $$\left|\frac 1 {g(t) -\lambda}\right|$$ in this case have an ##K\,##upper bound. However, if there is an integral of ##s^2(t)##, then there is also an integral of ##K^2s^2(t)##, so the smaller $$\frac 1 {(g(t) -\lambda)^2} s^2(t)$$ also has an integral. So in this case, the ##(T_g-\lambda I)^{-1}## operator has a value in the whole space.