Intermolecular forces and Transport phenomena

jacobtwilliams001
Messages
1
Reaction score
0
Homework Statement
There is a small uniform pressure gradient in an ideal gas at constant
temperature, so that there is a mass flow in the direction of the gradient. Using the mean
free path approach show that the rate flow of mass in the direction of the pressure
gradient per unit of area and per unit pressure gradient is mv(average)l/3kT.
Relevant Equations
mean free path: l=1/n*sigma
mass of flow rate: m^degree=rho*V*A
Kinetic Theory:
PV=NkT
NkT=1/3*Nm*v(average)^2
1/2*m*v(average)^2=3/2*kT
I am able to find and understand T from kinetic theory, but I do not understand how to use pressure gradient per unit of area and per unit pressure gradient.
 
Physics news on Phys.org
There is no such thing as "pressure gradient per unit of area". What the question wants, though the wording is perhaps a bit unclear, is the rate of mass flow per unit area and per unit pressure gradient, the mass flow being in the direction of the pressure gradient.
I.e. (1/(A*dP/dx))*dm/dt
 
  • Like
Likes jacobtwilliams001
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top