Internal energy won't add up to 0 in cyclic process

Click For Summary
In a cyclic process, the change in internal energy (ΔU) should equal zero, but the user struggled to reconcile their calculations, which resulted in a non-zero sum. They provided specific values for ΔU across different segments of the cycle, including isothermal, isobaric, and isochoric processes. The confusion stemmed from incorrectly applying the formula for ΔU in the isobaric process, mistaking it for the heat transfer equation. Upon realizing the error, they confirmed that the correct formula for ΔU in an isobaric process is indeed nC_VΔT. This clarification resolved the discrepancy, aligning with the principle that ΔU must equal zero in a cyclic process.
giraffe714
Messages
21
Reaction score
2
Homework Statement
A 1.00-mol sample of an ideal monatomic gas is taken through the cycle shown in Figure P22.54. The process A -> B is a reversible isothermal expansion.
(e) Calculate the changes in internal energy for each process.
Relevant Equations
ΔU_isothermal = 0, ΔU_isobaric = nC_P*ΔT, ΔU_isochoric = nC_V*ΔT, ΔU = Q + W (maybe?), PV = nRT
My problem isn't exactly with calculating the actual changes in internal energy, I'll put those values below. My problem is that I can't get the values to add up to 0, and I don't understand why since for cyclic processes, by definition, ΔU must equal 0.

$$ΔU_{AB} = ΔU_{isothermal} = 0$$
$$ΔU_{BC} = ΔU_{isobaric} = nC_PΔT_{BC} = n\frac{R}{1 - 1/γ}(T_C - T_B) = 1\frac{8.314}{1 - 1/(5/3)}(122 - 609) = -10122 \text{ J}$$
$$ΔU_{CA} = ΔU_{isochoric} = nC_VΔT_{CA} = n\frac{R}{γ - 1}(T_A - T_C) = 1\frac{8.314}{5/3 - 1}(609 - 122) = 6073\text{ J}$$

Which doesn't add up to 0 like it should for a cyclic process. What am I missing here? I feel like something with the "reversible" isothermal process but I'm not sure? And in case you're wondering where I got the values 122 and 609 from for the temperatures, I calculated them using PV = nRT:

##T_A = \frac{P_A*V_A}{nR} = \frac{5*101325*10*0.001}{1*8.314} = 609\text{ K}## (here I'm converting atm to Pa and L to m^3)
Now since A -> B is isothermal ##T_B = T_A = 609\text{ K}##
##T_C = \frac{1*101325*10*0.001}{1*8.314} = 122\text{ K}##
 

Attachments

  • diagramcyclicprocess.png
    diagramcyclicprocess.png
    5.2 KB · Views: 79
Physics news on Phys.org
Okay, so I figured it out, I was using the wrong equation for ΔU_isobaric, it's still ##nC_VΔT##, I got that formula confused with the one for heat transfer in an isobaric process, ##Q = nC_PΔT##.
 
  • Like
Likes berkeman and Chestermiller
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
761
  • · Replies 3 ·
Replies
3
Views
3K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 23 ·
Replies
23
Views
12K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K