MHB Interpolating Points with Continuous Modular Functions?

Click For Summary
The discussion focuses on defining a continuous function \( F(x;n) \) that interpolates points of the form \( (x, x \mod n) \) for integers \( n \) and \( x \). An example provided is \( F(x;2) = \frac{1}{2} - \frac{1}{2}\cos(\pi x) \), which successfully interpolates the points for \( n=2 \). Participants suggest that for smoothness, \( F(x;n) \) should be expressed as a trigonometric function, with a proposed general form involving a sum of sine and cosine terms. The constant term in \( F(x;n) \) appears to be \( \frac{n-1}{2} \), and a more complex expression for \( F(x;4) \) is also derived. The conversation concludes with a formula for \( F(x;n) \) that incorporates periodic properties and additional constraints to solve for unknown coefficients.
SatyaDas
Messages
22
Reaction score
0
Define a continuous function $$F(x;n)$$ that interpolates points (x, x mod n) for a given integer n and all integer x. For example $$F(x;2)=\frac{1}{2}-\frac{1}{2}\cos\left(\pi x\right)$$ interpolates all points (x, x mod 2) when x is an integer. Similarly $$F(x;3)$$ should interpolate points (0,0), (1,1), (2,2), (3,0), (4,1), and so on and so forth.

[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-0.307498196717283,"ymin":-1.0867151664943222,"xmax":8.25153781299237,"ymax":3.6140340364698735},"xAxisMinorSubdivisions":1,"yAxisMinorSubdivisions":1},"randomSeed":"e7520ae08f59a65224c632735e784ac7","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"\\frac{1}{2}-\\frac{1}{2}\\cos\\left(\\pi x\\right)"},{"id":"6","type":"table","columns":[{"values":["0","1","2","3","4","5","6","7","8","9","10"],"hidden":true,"id":"4","color":"#6042a6","latex":"x"},{"values":["0","1","0","1","0","1","0","1","0","1","0"],"id":"5","color":"#000000","latex":"y"}]}]}}[/DESMOS]
 
Mathematics news on Phys.org
As a first shot, here's $F(x;3) = 1 - \cos\left(\frac{2\pi x}3\right) - \frac1{\sqrt3}\sin\left(\frac{2\pi x}3\right)$:

[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-2.8493548505939787,"ymin":-4.648035822948437,"xmax":12.843943840753106,"ymax":8.544113758660483}},"randomSeed":"fa42535881c2cad8cca69bf627c0af41","expressions":{"list":[{"id":"6","type":"table","columns":[{"values":["0","1","2","3","4","5","6","7","8","9","10","11"],"hidden":true,"id":"4","color":"#6042a6","latex":"x_1"},{"values":["0","1","2","0","1","2","0","1","2","0","1","2"],"id":"5","color":"#000000","latex":"y_1"}]},{"type":"expression","id":"1","color":"#c74440","latex":"1\\ -\\ \\cos\\left(\\frac{2\\pi x}{3}\\right)\\ -\\ \\frac{1}{\\sqrt{3}}\\sin\\left(\\frac{2\\pi x}{3}\\right)"}]}}[/DESMOS]
 
Opalg said:
As a first shot, here's $F(x;3) = 1 - \cos\left(\frac{2\pi x}3\right) - \frac1{\sqrt3}\sin\left(\frac{2\pi x}3\right)$:
Nice attempt. Below is my output for F(x;3).
m-3.png
 
Of course, if you only require $F(x;n)$ to be continuous then you can use a sawtooth function consisting of straight line segments from $(kn,0)$ to $(kn+n-1,n-1)$ and from $(kn+n-1,n-1)$ to $((k+1)n,0)$ (for all $k\in\Bbb{Z}$). But I am assuming that you want $F(x;n)$ to be a smooth function. So it presumably needs to be a trigonometric function.

For $n=4$ I'm getting $F(x;4) = \frac32 - \cos\bigl(\frac{\pi x}2\bigr) - \sin\bigl(\frac{\pi x}2\bigr) - \frac12\cos(\pi x)$. I don't yet see what the general formula should be, but it seems that the constant term in $F(x;n)$ must be $\frac{n-1}2$.

[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-2.8126723934116136,"ymin":-7.943888407281889,"xmax":17.187327606588386,"ymax":8.868573830351757}},"randomSeed":"20aff6dd18a698f6934d1e00080549f9","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"\\frac{3}{2\\ }\\ -\\ \\cos\\left(\\frac{\\pi x}{2}\\right)\\ -\\ \\sin\\left(\\frac{\\pi x}{2}\\right)\\ -\\ \\frac{1}{2}\\cos\\left(\\pi x\\right)"}]}}[/DESMOS]
 
Opalg said:
Of course, if you only require $F(x;n)$ to be continuous then you can use a sawtooth function consisting of straight line segments from $(kn,0)$ to $(kn+n-1,n-1)$ and from $(kn+n-1,n-1)$ to $((k+1)n,0)$ (for all $k\in\Bbb{Z}$). But I am assuming that you want $F(x;n)$ to be a smooth function. So it presumably needs to be a trigonometric function.

For $n=4$ I'm getting $F(x;4) = \frac32 - \cos\bigl(\frac{\pi x}2\bigr) - \sin\bigl(\frac{\pi x}2\bigr) - \frac12\cos(\pi x)$. I don't yet see what the general formula should be, but it seems that the constant term in $F(x;n)$ must be $\frac{n-1}2$.

Indeed, I meant smooth function and your finding of constant term matches with mine. So, high five. Below is my output for F(x;4). I guess it will help to get the idea that there is a pattern.
m-4.png
 
Here is my solution.
Since $F(x;n)$ is periodic with period $n$, we can assume that the function can be expressed as
$$
F(x;n)=\sum_{i=0}^{n-1}\left(a_i\cos\left(\frac{2\pi i x}{n}\right)+b_i\sin\left(\frac{2\pi i x}{n}\right)\right).
$$
There are total of $2n$ unknowns.
We get $n$ equations by using the fact
$$
F(j;n)=j\text{ for all }j\in Z\text{ and }0\le j\le n-1.
$$
We need $n$ more equations so that we can find all the unknowns. For that purpose we can impose more restrictions on the properties of the function $F(x;n)$. If we assume $F'(x;n)=0$ for all $x\in Z$ then we get $n$ more equations. So, now we have a system of $2n$ equations with $2n$ unknowns. If we solve them we get:
$$
a_0=\frac{n-1}{2},\\
a_i=-\frac{n-i}{n} \text{ for all } 0<i<n,\\
b_0=0,\text{ and}\\
b_i=-\frac{n-i}{n}\cot\left(\frac{i\pi}{n}\right)\text{ for all } 0<i<n.
$$
If we simplify things we get
$$
F\left(x;n\right)=\frac{n-1}{2}-\sum_{i=1}^{n-1}\left(1-\frac{i}{n}\right)\csc\left(\pi\frac{i}{n}\right)\sin\left(\pi\frac{i}{n}\left(2x+1\right)\right).
$$
This graph can be visualized interactively at desmos:
[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-9.482047024807466,"ymin":-2.5350658426248973,"xmax":21.090566527405265,"ymax":14.255865825972153}},"randomSeed":"612b9f843d4d8a7b35fc02d3415719d3","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"F\\left(x,n\\right)=\\frac{n-1}{2}-\\sum_{i=1}^{n-1}\\left(1-\\frac{i}{n}\\right)\\csc\\left(\\pi\\frac{i}{n}\\right)\\sin\\left(\\pi\\frac{i}{n}\\left(2x+1\\right)\\right)"},{"type":"expression","id":"2","color":"#2d70b3","latex":"F\\left(x,N\\right)"},{"type":"expression","id":"3","color":"#388c46","latex":"N=5","hidden":true,"slider":{"hardMin":true,"hardMax":true,"min":"0","max":"100","step":"1"}}]}}[/DESMOS]
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K