MHB Interpreting & Solving Nullspace

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Nullspace
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
What is the interpretation of this nullspace? How to write the solution in parametric form if possible?

$N( \left(\begin{matrix}2&-1&0\\1&0&0\\0&0&0\end{matrix}\right))$

Using Gauss-Jordan Elimination

$\left(\begin{matrix}2&-1&0\\1&0&0\\0&0&0\end{matrix}\right)$ $\implies$ $\left(\begin{matrix}1&0&0\\0&1&0\\0&0&0\end{matrix}\right)$
Cbarker
 
Physics news on Phys.org
Hi Cbarker1,

You have pivots in the first and second columns, so $x = 0$ and $y = 0$. The row of zeros indicate that $z$ is a free variable. You can write the solution parametrically as $x = 0$, $y = 0$, $z = t$, where $t$ is a parameter variable.
 
Just for clarity's sake:

for a $m \times n$ matrix $A = (a_{ij})$ we can regard it as a function $\Bbb R^n \to \Bbb R^m$ that sends the vector:

$\begin{bmatrix}x_1\\ \vdots\\ x_n\end{bmatrix} \mapsto \begin{bmatrix}a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\a_{m1}&\dots&a_{mn}\end{bmatrix}\begin{bmatrix}x_1\\ \vdots\\x_n\end{bmatrix}$

Then $N(A) = \left\{\begin{bmatrix}x_1\\ \vdots\\ x_n\end{bmatrix} \in \Bbb R^n: \begin{bmatrix}a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\a_{m1}&\dots&a_{mn}\end{bmatrix}\begin{bmatrix}x_1\\ \vdots\\x_n\end{bmatrix} = \begin{bmatrix}0\\ \vdots\\0\end{bmatrix}\right\}$

In your case, then, we seek $(x,y,z)$ such that:

$\begin{bmatrix}2&-1&0\\1&0&0\\0&0&0\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}$

While Gaussian elimination (row-reduction) certainly works, it is possible to solve the related system of equations:

$2x - y +0z = 0$
$x + 0y + 0z = 0$
$0x + 0y + 0z = 0$

by *inspection*.

We can simplify this to:

$2x - y = 0$
$x = 0$

But I kept the $0$-coefficients in on purpose to show you that *any* $z$ will do.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
Replies
34
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K