Interval of eigenvalues using Gershgorin circles

Click For Summary
SUMMARY

The discussion focuses on determining the intervals of eigenvalues for the matrix $$A=\begin{pmatrix}2 & 0.4 & -0.1 & 0.3 \\ 0.3 & 3 & -0.1 & 0.2 \\ 0 & 0.7 & 3 & 1 \\ 0.2 & 0.1 & 0 & 4\end{pmatrix}$$ using Gershgorin circles. The row Gershgorin circles are defined as $$K_1=\{z\in \mathbb{C} : |z-2|\leq 0.8 \}, K_2=\{z\in \mathbb{C} : |z-3|\leq 0.6 \}, K_3=\{z\in \mathbb{C} : |z-3|\leq 1.7 \}, K_4=\{z\in \mathbb{C} : |z-4|\leq 0.3 \}$$ and the column circles as $$K_1'=\{z\in \mathbb{C} : |z-2|\leq 0.5 \}, K_2'=\{z\in \mathbb{C} : |z-3|\leq 1.2 \}, K_3'=\{z\in \mathbb{C} : |z-3|\leq 0.2 \}, K_4'=\{z\in \mathbb{C} : |z-4|\leq 1.5 \}$$. The conclusion reached is that all eigenvalues of matrix A must lie within the intersection of the unions of both row and column Gershgorin circles.

PREREQUISITES
  • Understanding of matrix theory, specifically eigenvalues and eigenvectors.
  • Familiarity with Gershgorin circle theorem.
  • Basic knowledge of complex numbers and their geometric representation.
  • Ability to perform matrix operations and analyze matrix properties.
NEXT STEPS
  • Study the Gershgorin circle theorem in detail to understand its implications for eigenvalue localization.
  • Learn about the geometric interpretation
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the matrix $$A=\begin{pmatrix}2 & 0.4 & -0.1 & 0.3 \\ 0.3 & 3 & -0.1 & 0.2 \\ 0 & 0.7 & 3 & 1 \\ 0.2 & 0.1 & 0 & 4\end{pmatrix}$$ We get the row Gershgorin circles: $$K_1=\{z\in \mathbb{C} : |z-2|\leq 0.8 \} \\ K_2=\{z\in \mathbb{C} : |z-3|\leq 0.6 \} \\ K_3=\{z\in \mathbb{C} : |z-3|\leq 1.7 \} \\ K_4=\{z\in \mathbb{C} : |z-4|\leq 0.3 \} $$ and the column Gershgorin circles: $$K_1'=\{z\in \mathbb{C} : |z-2|\leq 0.5 \} \\ K_2'=\{z\in \mathbb{C} : |z-3|\leq 1.2 \} \\ K_3'=\{z\in \mathbb{C} : |z-3|\leq 0.2 \} \\ K_4'=\{z\in \mathbb{C} : |z-4|\leq 1.5 \} $$

To get the intervals of the eigenvalues, we have to look at the union of all row circles and the union of all column circles, or not?

Then at the result we have to take the intersection, or not?

Till now I have seen only examples where $A=A^T$ and so the row and column circles are the same, and so I am confused here.

(Wondering)
 
Physics news on Phys.org
According to the wiki article, the way I see it, ALL the eigenvalues of $A$ must lie in
$$\displaystyle\cup_{i=1}^4K_i,$$
as you've defined them, AND ALL the eigenvalues of $A$ must lie in
$$\displaystyle\cup_{i=1}^4K_i'.$$
Therefore, all the eigenvalues of $A$ must lie in
$$\displaystyle\left(\cup_{i=1}^4K_i\right)\cap\left(\cup_{i=1}^4K_i'\right).$$
I don't think you can say that the eigenvalues must lie in
$$\cup_{i=1}^4(K_i\cap K_i'),$$
which is what I would be tempted to think, unless you can show those are equivalent.
 
Hey mathmari!

I have just read the wiki article about Gershgorin circles.
As I understand it, and this is verifiable from the proofs that are given in the article:
  • All eigenvalues are in the union of all row circles.
  • All eigenvalues are in the union of all column circles.
  • If the row circles can be divided into disjoint unions, then each disjoint union contains exactly as many eigenvalues as there are circles in it.
    Same for the column circles.
(Cool)

In this case there is a row circle that overlaps all other row circles.
And there is also a column circle that overlaps all others.
So I think the only thing we can say, is that all eigenvalues are in the intersection of the row-union and the column-union. (Thinking)
 
So this is what it looks like:
\begin{tikzpicture}
\newcommand{\coordinates}{
\draw[help lines] (0,-2) grid (6,2);
\draw[-stealth] (0,0) -- (6.4,0) node[label=Re]{};
\draw[stealth-stealth] (0,-2.3) -- (0,2.3) node[label=right:Im]{};
\draw[fill] foreach \i in {1,...,6} { (\i,0) node[yshift=-2cm,label=below:\i]{} };
\draw foreach \i in {-2,...,2} { (0,\i) node[label=left:\i]{} };
}

\newcommand{\rowcircles}{
(2,0) circle (0.8)
(3,0) circle (0.6)
circle (1.7)
(4,0) circle (0.3)
}
\newcommand{\colcircles}{
(2,0) circle (0.5)
(3,0) circle (1.2)
circle (0.2)
(4,0) circle (1.5)
}

\begin{scope}
\coordinates
\filldraw[red, fill opacity=.3] \rowcircles node[above left] at (2.3,1.4) {row circles};
\filldraw[blue, fill opacity=.3] \colcircles node[above right] at (4,1.4) {column circles};
\fill
(2,0) circle (1pt)
(3,0) circle (1pt)
(4,0) circle (1pt);
\end{scope}

\begin{scope}[xshift=8cm]
\coordinates
\clip\rowcircles;
\path[fill=red!50!blue, fill opacity=.6] \colcircles;
\draw (1.8617,0) circle (2pt)
(4.0368,0) circle (2pt)
(3.0508,0.2407) circle (2pt)
(3.0508,-0.2407) circle (2pt);
\end{scope}
\end{tikzpicture}
The small circles on the right are the actual eigenvalues. (Malthe)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K