Interval of eigenvalues using Gershgorin circles

Click For Summary

Discussion Overview

The discussion revolves around the application of Gershgorin circles to determine the intervals of eigenvalues for a given matrix. Participants explore the relationships between row and column Gershgorin circles and their implications for locating eigenvalues, addressing both theoretical aspects and specific examples.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a matrix and calculates the row and column Gershgorin circles, questioning whether the eigenvalue intervals can be determined by taking the union of these circles and then their intersection.
  • Another participant asserts that all eigenvalues must lie within the union of the row circles and the union of the column circles, suggesting that the intersection of these unions is the correct approach to find the eigenvalue intervals.
  • A different participant references the Gershgorin circles article, stating that all eigenvalues are contained within the union of the row and column circles, and notes the presence of overlapping circles, leading to the conclusion that eigenvalues must be in the intersection of the unions.
  • A participant provides a visual representation of the row and column circles, indicating the actual eigenvalues and highlighting the overlaps and intersections of the circles.

Areas of Agreement / Disagreement

Participants express differing views on how to interpret the relationships between the row and column Gershgorin circles. While some agree on the necessity of considering the unions and their intersection, others question the equivalence of certain interpretations, indicating that the discussion remains unresolved.

Contextual Notes

Participants note that the presence of overlapping circles complicates the determination of eigenvalue intervals, and there is a lack of consensus on how to proceed with the analysis given the non-symmetric nature of the matrix.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the matrix $$A=\begin{pmatrix}2 & 0.4 & -0.1 & 0.3 \\ 0.3 & 3 & -0.1 & 0.2 \\ 0 & 0.7 & 3 & 1 \\ 0.2 & 0.1 & 0 & 4\end{pmatrix}$$ We get the row Gershgorin circles: $$K_1=\{z\in \mathbb{C} : |z-2|\leq 0.8 \} \\ K_2=\{z\in \mathbb{C} : |z-3|\leq 0.6 \} \\ K_3=\{z\in \mathbb{C} : |z-3|\leq 1.7 \} \\ K_4=\{z\in \mathbb{C} : |z-4|\leq 0.3 \} $$ and the column Gershgorin circles: $$K_1'=\{z\in \mathbb{C} : |z-2|\leq 0.5 \} \\ K_2'=\{z\in \mathbb{C} : |z-3|\leq 1.2 \} \\ K_3'=\{z\in \mathbb{C} : |z-3|\leq 0.2 \} \\ K_4'=\{z\in \mathbb{C} : |z-4|\leq 1.5 \} $$

To get the intervals of the eigenvalues, we have to look at the union of all row circles and the union of all column circles, or not?

Then at the result we have to take the intersection, or not?

Till now I have seen only examples where $A=A^T$ and so the row and column circles are the same, and so I am confused here.

(Wondering)
 
Physics news on Phys.org
According to the wiki article, the way I see it, ALL the eigenvalues of $A$ must lie in
$$\displaystyle\cup_{i=1}^4K_i,$$
as you've defined them, AND ALL the eigenvalues of $A$ must lie in
$$\displaystyle\cup_{i=1}^4K_i'.$$
Therefore, all the eigenvalues of $A$ must lie in
$$\displaystyle\left(\cup_{i=1}^4K_i\right)\cap\left(\cup_{i=1}^4K_i'\right).$$
I don't think you can say that the eigenvalues must lie in
$$\cup_{i=1}^4(K_i\cap K_i'),$$
which is what I would be tempted to think, unless you can show those are equivalent.
 
Hey mathmari!

I have just read the wiki article about Gershgorin circles.
As I understand it, and this is verifiable from the proofs that are given in the article:
  • All eigenvalues are in the union of all row circles.
  • All eigenvalues are in the union of all column circles.
  • If the row circles can be divided into disjoint unions, then each disjoint union contains exactly as many eigenvalues as there are circles in it.
    Same for the column circles.
(Cool)

In this case there is a row circle that overlaps all other row circles.
And there is also a column circle that overlaps all others.
So I think the only thing we can say, is that all eigenvalues are in the intersection of the row-union and the column-union. (Thinking)
 
So this is what it looks like:
\begin{tikzpicture}
\newcommand{\coordinates}{
\draw[help lines] (0,-2) grid (6,2);
\draw[-stealth] (0,0) -- (6.4,0) node[label=Re]{};
\draw[stealth-stealth] (0,-2.3) -- (0,2.3) node[label=right:Im]{};
\draw[fill] foreach \i in {1,...,6} { (\i,0) node[yshift=-2cm,label=below:\i]{} };
\draw foreach \i in {-2,...,2} { (0,\i) node[label=left:\i]{} };
}

\newcommand{\rowcircles}{
(2,0) circle (0.8)
(3,0) circle (0.6)
circle (1.7)
(4,0) circle (0.3)
}
\newcommand{\colcircles}{
(2,0) circle (0.5)
(3,0) circle (1.2)
circle (0.2)
(4,0) circle (1.5)
}

\begin{scope}
\coordinates
\filldraw[red, fill opacity=.3] \rowcircles node[above left] at (2.3,1.4) {row circles};
\filldraw[blue, fill opacity=.3] \colcircles node[above right] at (4,1.4) {column circles};
\fill
(2,0) circle (1pt)
(3,0) circle (1pt)
(4,0) circle (1pt);
\end{scope}

\begin{scope}[xshift=8cm]
\coordinates
\clip\rowcircles;
\path[fill=red!50!blue, fill opacity=.6] \colcircles;
\draw (1.8617,0) circle (2pt)
(4.0368,0) circle (2pt)
(3.0508,0.2407) circle (2pt)
(3.0508,-0.2407) circle (2pt);
\end{scope}
\end{tikzpicture}
The small circles on the right are the actual eigenvalues. (Malthe)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K