Introducing Quadratic Residues: Real World Examples & Law of Reciprocity

  • Context: MHB 
  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Quadratic
Click For Summary
SUMMARY

The discussion centers on quadratic residues and the Law of Quadratic Reciprocity, which is a fundamental theorem in number theory. It establishes that the set of non-zero quadratic residues in the field $\Bbb Z_p$ forms a subgroup of the group of units $\Bbb Z_p^{\ast}$. The map $\phi: x \to x^2$ is a surjective group homomorphism, with its kernel consisting of the roots of the polynomial $x^2 - 1$. For an odd prime $p$, the size of the set of quadratic residues is given by the formula $|R| = \frac{p-1}{2}$, allowing for the identification of "positive" elements in finite fields.

PREREQUISITES
  • Understanding of elementary number theory concepts
  • Familiarity with group theory and homomorphisms
  • Knowledge of finite fields, specifically $\Bbb Z_p$
  • Basic algebraic manipulation of polynomials
NEXT STEPS
  • Explore the implications of the Law of Quadratic Reciprocity in number theory
  • Study the Langlands program and its connection to quadratic residues
  • Investigate Hilbert's 9th problem and its relevance to quadratic residues
  • Learn about the structure of finite fields and their applications in cryptography
USEFUL FOR

Mathematicians, number theorists, and students interested in advanced algebraic concepts, particularly those focusing on quadratic residues and their applications in theoretical mathematics.

matqkks
Messages
282
Reaction score
6
What is the most motivating way to introduce quadratic residues? Are there any real life examples of quadratic residues?
Why is the Law of Quadratic Reciprocity considered as one of the most important in number theory?
 
Mathematics news on Phys.org
(I don't know an answer to the first one, not being a teacher in any respect)

This is an interesting question. I don't recall any direct consequence(s) of it, but thinking of a more general Langland programs, for example, although the consequences are complicated.

The law of quadratic residues is one of the non-trivial results in elementary number theory. Several results of algebraic and analytic number theory lies on this theorem. In fact, there are some open conjectures regarding a smooth generalization of this result, take for example, Hilbert's 9-th problem.
 
Last edited:
Here is one aspect of quadratic residues I always found fascinating:

Consider the field $\Bbb Z_p$.

Since this *is* a field, its group of units is precisely the set of non-zero elements, $\Bbb Z_p^{\ast}$.

Since this is a finite group, any subset closed under multiplication is a subgroup.

If we denote the set of (non-zero) quadratic resides by $R$, it is clear $R$ is a subgroup of the group of units since if:

$x,y \in R$, we have $x = a^2, y = b^2$ for some $a,b \in \Bbb Z_p^{\ast}$, thus:

$ab \in \Bbb Z_p^{\ast}$ (since any field is, of course, an integral domain), and:

$xy = (a^2)(b^2) = (ab)^2 \implies xy \in R$ (because multiplication in $\Bbb Z_p^{\ast}$ is commutative).

From the above, it should be clear that the map $\phi: x \to x^2$ is a surjective group homomorphism from $\Bbb Z_p^{\ast} \to R$. A natural question to ask, then, is: what is its kernel?

Clearly $1$ is the identity of $R$ ($1 \in R$ since $1 = 1\ast1 = 1^2$). Thus finding the kernel is the same as finding the roots of $x^2 - 1$ in $\Bbb Z_p^{\ast}$. Since $\Bbb Z_p$ is a field, and $x^2 - 1 \in \Bbb Z_p[x]$, we know this equation can have at most 2 roots. In fact, if $p \neq 2$, we have EXACTLY two roots: 1 and -1 (= p-1).

So for an odd prime $p$, group theory tells us that:

$[\Bbb Z_p^{\ast}:R] = |\text{ker}(\phi)| = 2$, that is:

$|R| = \frac{p-1}{2}$.

This, in effect, let's us choose "positive" elements of a finite field: just as in the case of real numbers, the "positive" elements are the ones that be written as the square of another (non-zero) element of the field. The rules for the cosets $R$ and $-R$ are the same as the rules we learned for positive and negative real numbers under "ordinary" multiplication:

$R\ast R = R$
$R \ast -R = -R \ast R = -R$
$-R \ast -R = R$.

This allows us to use "parity" arguments in some cases, saving time and sometimes considerable calculation.
 
Deveno said:
Here is one aspect of quadratic residues I always found fascinating:

Consider the field $\Bbb Z_p$.

Since this *is* a field, its group of units is precisely the set of non-zero elements, $\Bbb Z_p^{\ast}$.

Since this is a finite group, any subset closed under multiplication is a subgroup.

If we denote the set of (non-zero) quadratic resides by $R$, it is clear $R$ is a subgroup of the group of units since if:

$x,y \in R$, we have $x = a^2, y = b^2$ for some $a,b \in \Bbb Z_p^{\ast}$, thus:

$ab \in \Bbb Z_p^{\ast}$ (since any field is, of course, an integral domain), and:

$xy = (a^2)(b^2) = (ab)^2 \implies xy \in R$ (because multiplication in $\Bbb Z_p^{\ast}$ is commutative).

From the above, it should be clear that the map $\phi: x \to x^2$ is a surjective group homomorphism from $\Bbb Z_p^{\ast} \to R$. A natural question to ask, then, is: what is its kernel?

Clearly $1$ is the identity of $R$ ($1 \in R$ since $1 = 1\ast1 = 1^2$). Thus finding the kernel is the same as finding the roots of $x^2 - 1$ in $\Bbb Z_p^{\ast}$. Since $\Bbb Z_p$ is a field, and $x^2 - 1 \in \Bbb Z_p[x]$, we know this equation can have at most 2 roots. In fact, if $p \neq 2$, we have EXACTLY two roots: 1 and -1 (= p-1).

So for an odd prime $p$, group theory tells us that:

$[\Bbb Z_p^{\ast}:R] = |\text{ker}(\phi)| = 2$, that is:

$|R| = \frac{p-1}{2}$.

This, in effect, let's us choose "positive" elements of a finite field: just as in the case of real numbers, the "positive" elements are the ones that be written as the square of another (non-zero) element of the field. The rules for the cosets $R$ and $-R$ are the same as the rules we learned for positive and negative real numbers under "ordinary" multiplication:

$R\ast R = R$
$R \ast -R = -R \ast R = -R$
$-R \ast -R = R$.

This allows us to use "parity" arguments in some cases, saving time and sometimes considerable calculation.
Great expository post!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
3
Views
2K
Replies
2
Views
2K