Introducing Quadratic Residues: Real World Examples & Law of Reciprocity

  • Context: MHB 
  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Quadratic
Click For Summary

Discussion Overview

The discussion revolves around the introduction of quadratic residues, exploring their real-world applications and the significance of the Law of Quadratic Reciprocity in number theory. Participants examine theoretical aspects, mathematical reasoning, and potential implications in both elementary and advanced number theory.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant questions how to effectively introduce quadratic residues and seeks real-life examples.
  • Another participant notes the complexity of the consequences of quadratic residues and references the Langlands program, suggesting a connection to deeper results in number theory.
  • A participant provides a detailed examination of the group structure of quadratic residues in the field $\Bbb Z_p$, discussing the subgroup properties and the surjective homomorphism related to quadratic residues.
  • The same participant emphasizes the significance of the kernel of the homomorphism and its relation to the roots of the polynomial $x^2 - 1$ in $\Bbb Z_p^{\ast}$, particularly for odd primes.
  • The discussion includes a comparison of the properties of quadratic residues to the positive and negative elements of real numbers, suggesting a broader mathematical framework for understanding these concepts.

Areas of Agreement / Disagreement

Participants express varying levels of familiarity with the topic, and while some provide detailed mathematical insights, there is no consensus on the best way to introduce quadratic residues or their applications. The discussion remains open-ended with multiple perspectives presented.

Contextual Notes

Some participants reference advanced concepts and conjectures, such as Hilbert's 9th problem, which may not be fully accessible to all readers. The discussion also highlights the dependence on specific definitions and the mathematical context of quadratic residues.

matqkks
Messages
283
Reaction score
6
What is the most motivating way to introduce quadratic residues? Are there any real life examples of quadratic residues?
Why is the Law of Quadratic Reciprocity considered as one of the most important in number theory?
 
Mathematics news on Phys.org
(I don't know an answer to the first one, not being a teacher in any respect)

This is an interesting question. I don't recall any direct consequence(s) of it, but thinking of a more general Langland programs, for example, although the consequences are complicated.

The law of quadratic residues is one of the non-trivial results in elementary number theory. Several results of algebraic and analytic number theory lies on this theorem. In fact, there are some open conjectures regarding a smooth generalization of this result, take for example, Hilbert's 9-th problem.
 
Last edited:
Here is one aspect of quadratic residues I always found fascinating:

Consider the field $\Bbb Z_p$.

Since this *is* a field, its group of units is precisely the set of non-zero elements, $\Bbb Z_p^{\ast}$.

Since this is a finite group, any subset closed under multiplication is a subgroup.

If we denote the set of (non-zero) quadratic resides by $R$, it is clear $R$ is a subgroup of the group of units since if:

$x,y \in R$, we have $x = a^2, y = b^2$ for some $a,b \in \Bbb Z_p^{\ast}$, thus:

$ab \in \Bbb Z_p^{\ast}$ (since any field is, of course, an integral domain), and:

$xy = (a^2)(b^2) = (ab)^2 \implies xy \in R$ (because multiplication in $\Bbb Z_p^{\ast}$ is commutative).

From the above, it should be clear that the map $\phi: x \to x^2$ is a surjective group homomorphism from $\Bbb Z_p^{\ast} \to R$. A natural question to ask, then, is: what is its kernel?

Clearly $1$ is the identity of $R$ ($1 \in R$ since $1 = 1\ast1 = 1^2$). Thus finding the kernel is the same as finding the roots of $x^2 - 1$ in $\Bbb Z_p^{\ast}$. Since $\Bbb Z_p$ is a field, and $x^2 - 1 \in \Bbb Z_p[x]$, we know this equation can have at most 2 roots. In fact, if $p \neq 2$, we have EXACTLY two roots: 1 and -1 (= p-1).

So for an odd prime $p$, group theory tells us that:

$[\Bbb Z_p^{\ast}:R] = |\text{ker}(\phi)| = 2$, that is:

$|R| = \frac{p-1}{2}$.

This, in effect, let's us choose "positive" elements of a finite field: just as in the case of real numbers, the "positive" elements are the ones that be written as the square of another (non-zero) element of the field. The rules for the cosets $R$ and $-R$ are the same as the rules we learned for positive and negative real numbers under "ordinary" multiplication:

$R\ast R = R$
$R \ast -R = -R \ast R = -R$
$-R \ast -R = R$.

This allows us to use "parity" arguments in some cases, saving time and sometimes considerable calculation.
 
Deveno said:
Here is one aspect of quadratic residues I always found fascinating:

Consider the field $\Bbb Z_p$.

Since this *is* a field, its group of units is precisely the set of non-zero elements, $\Bbb Z_p^{\ast}$.

Since this is a finite group, any subset closed under multiplication is a subgroup.

If we denote the set of (non-zero) quadratic resides by $R$, it is clear $R$ is a subgroup of the group of units since if:

$x,y \in R$, we have $x = a^2, y = b^2$ for some $a,b \in \Bbb Z_p^{\ast}$, thus:

$ab \in \Bbb Z_p^{\ast}$ (since any field is, of course, an integral domain), and:

$xy = (a^2)(b^2) = (ab)^2 \implies xy \in R$ (because multiplication in $\Bbb Z_p^{\ast}$ is commutative).

From the above, it should be clear that the map $\phi: x \to x^2$ is a surjective group homomorphism from $\Bbb Z_p^{\ast} \to R$. A natural question to ask, then, is: what is its kernel?

Clearly $1$ is the identity of $R$ ($1 \in R$ since $1 = 1\ast1 = 1^2$). Thus finding the kernel is the same as finding the roots of $x^2 - 1$ in $\Bbb Z_p^{\ast}$. Since $\Bbb Z_p$ is a field, and $x^2 - 1 \in \Bbb Z_p[x]$, we know this equation can have at most 2 roots. In fact, if $p \neq 2$, we have EXACTLY two roots: 1 and -1 (= p-1).

So for an odd prime $p$, group theory tells us that:

$[\Bbb Z_p^{\ast}:R] = |\text{ker}(\phi)| = 2$, that is:

$|R| = \frac{p-1}{2}$.

This, in effect, let's us choose "positive" elements of a finite field: just as in the case of real numbers, the "positive" elements are the ones that be written as the square of another (non-zero) element of the field. The rules for the cosets $R$ and $-R$ are the same as the rules we learned for positive and negative real numbers under "ordinary" multiplication:

$R\ast R = R$
$R \ast -R = -R \ast R = -R$
$-R \ast -R = R$.

This allows us to use "parity" arguments in some cases, saving time and sometimes considerable calculation.
Great expository post!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
3
Views
2K
Replies
2
Views
2K