(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Given a transfer function in the Laplace Domain

Detemine an expression for x(t), given f(t) is a sinusodial input with frequency omega = root(k2/m2) and amplitude of 1 N (initial conditions equal 0)

2. Relevant equations

[URL]http://latex.codecogs.com/gif.latex?X_1/F=(m_2&space;s^2+k_2)/(m_1&space;m_2&space;s^4+k_2&space;(m_1+m_2)s^2&space;)[/URL]

Inverse laplace 1/s^2 = t.u(t)

Inverse laplace (omega/s^2+omega^2) = sin(omega.t) . u(t)

3. The attempt at a solution

I divided the transfer function by m2 to obtain omega^2. I then brought the F over to the LHS as a sin function in the laplace domain (omega/s^2+omega^2). I have obtained the following equation

[URL]http://latex.codecogs.com/gif.latex?X_1=(1/s^2)&space;.w/((s^2&space;m_1+w^2&space;((m_1+m_2)/m_2&space;))[/URL]

What is the next step? I am given inverse laplace transforms for 1/s^2 and omega/s^2+omega^2

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Inverse Laplace of a Mass-Spring System

**Physics Forums | Science Articles, Homework Help, Discussion**