Inverse of adjoint - where is my mistake ?

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Inverse Mistake
Click For Summary
SUMMARY

The discussion centers on the calculation of the adjoint of the inverse of a matrix A, specifically the matrix A = \[\begin{pmatrix} 2 &4 &1 \\ -4 &7 &3 \\ 5 &1 &-2 \end{pmatrix}\]. The user calculated the adjoint adj(A) as \[\begin{pmatrix} -17 &9 &5 \\ 7 &-9 &-10 \\ -39 &18 &30 \end{pmatrix}\] and the determinant of A as -45, leading to a determinant of adj(A) as 2025. The user incorrectly applied the formula for adj(A^{-1}) and derived \[\frac{1}{2025}A\] instead of the correct \[-\frac{1}{45}A\]. The error lies in the misunderstanding of the relationship between the adjugate and the determinant.

PREREQUISITES
  • Understanding of matrix operations, specifically adjoints and inverses.
  • Familiarity with determinants and their properties.
  • Knowledge of the adjugate matrix and its relationship to the inverse of a matrix.
  • Basic linear algebra concepts, including matrix multiplication and properties of square matrices.
NEXT STEPS
  • Study the properties of the adjugate matrix in detail.
  • Learn about the derivation of the inverse of a matrix using the adjugate method.
  • Explore the relationship between determinants and adjugates in linear algebra.
  • Practice solving problems involving adjoints and inverses of matrices to reinforce understanding.
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as anyone involved in computational mathematics or engineering requiring matrix manipulation skills.

Yankel
Messages
390
Reaction score
0
Hello all, I have a matrix A:

\[\begin{pmatrix} 2 &4 &1 \\ -4 &7 &3 \\ 5 &1 &-2 \end{pmatrix}\]

and I need to find the adjoint of the matrix inverse.

I found adj(A) to be:

\[\begin{pmatrix} -17 &9 &5 \\ 7 &-9 &-10 \\ -39 &18 &30 \end{pmatrix}\]

and I found the determinant of A to be -45 and the determinant of adj(A) to be 2025.

Now based on:

\[adj(A^{-1})=(adj(A))^{-1}\]

I tried solving the question, I did:

\[B=adj(A))\]

and looked for:

\[B^{-1}\]

This way:

\[B^{-1}=\frac{1}{\left | B \right |}adj(B)\]

and got:

\[\frac{1}{2025}A\]

which is not the answer. the answer should be:

\[-\frac{1}{45}A\]

And I don't understand what I did wrong here.

Thank you
 
Physics news on Phys.org
Yankel said:
Hello all, I have a matrix A:

\[\begin{pmatrix} 2 &4 &1 \\ -4 &7 &3 \\ 5 &1 &-2 \end{pmatrix}\]

and I need to find the adjoint of the matrix inverse.

I found adj(A) to be:

\[\begin{pmatrix} -17 &9 &5 \\ 7 &-9 &-10 \\ -39 &18 &30 \end{pmatrix}\]

and I found the determinant of A to be -45 and the determinant of adj(A) to be 2025.

Now based on:

\[adj(A^{-1})=(adj(A))^{-1}\]

I tried solving the question, I did:

\[B=adj(A))\]

and looked for:

\[B^{-1}\]

This way:

\[B^{-1}=\frac{1}{\left | B \right |}adj(B)\]

and got:

\[\frac{1}{2025}A\]

which is not the answer. the answer should be:

\[-\frac{1}{45}A\]

And I don't understand what I did wrong here.

Thank you

Hi Yankel,

The inverse of $A$ is given by:
$$A^{-1}=\frac{1}{\det A} \text{adj }A$$
See adjugate matrix (as it is called with less ambiguity) on wiki.Speaking about $\det(\text{adj }A)$, it relates to $\det A$ as:
$$\det(\text{adj }A) = (\det A)^{n-1} = (-45)^{3-1} = 2025$$
 
I like Serena, thank you !

among the formulas out there I mentioned that I did find det(adj(A)) to be 2025, it was easy to miss this line.

This is not what I am asking. Taking the first formula you mentioned, I found the adj(inverse of A), and I was wrong, and can't find my mistake.
 
Yankel said:
I like Serena, thank you !

among the formulas out there I mentioned that I did find det(adj(A)) to be 2025, it was easy to miss this line.

This is not what I am asking. Taking the first formula you mentioned, I found the adj(inverse of A), and I was wrong, and can't find my mistake.

We have:
$$A^{-1} = \frac 1{\det A} \text{adj }A$$
Therefore we also have:
$$A = \frac 1{\det A^{-1}} \text{adj}(A^{-1}) \quad\Rightarrow\quad \text{adj}(A^{-1}) = \det A^{-1} \cdot A = \frac 1{\det A} \cdot A$$

Yankel said:
Now based on:

\[adj(A^{-1})=(adj(A))^{-1}\]

I tried solving the question, I did:

\[B=adj(A))\]

and looked for:

\[B^{-1}\]

This way:

\[B^{-1}=\frac{1}{\left | B \right |}adj(B)\]

Let's substitute $B=\text{adj}(A)$. That gives us:

\[B^{-1}=\frac{1}{\left | \text{adj}(A) \right |}\text{adj}(\text{adj}(A))\]

Did you evaluate $\text{adj}(\text{adj}(A))$?
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K