MHB Inverse of adjoint - where is my mistake ?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Inverse Mistake
Click For Summary
The discussion revolves around finding the adjoint of the inverse of a given matrix A. The user calculated the adjoint of A and its determinant but encountered a discrepancy when attempting to find the adjoint of A's inverse, leading to an incorrect result. The correct relationship states that the adjoint of the inverse can be expressed in terms of the adjoint of A and its determinant. A key point raised is the need to evaluate the adjoint of the adjoint of A, which may clarify the user's misunderstanding. The conversation emphasizes the importance of correctly applying matrix properties in these calculations.
Yankel
Messages
390
Reaction score
0
Hello all, I have a matrix A:

\[\begin{pmatrix} 2 &4 &1 \\ -4 &7 &3 \\ 5 &1 &-2 \end{pmatrix}\]

and I need to find the adjoint of the matrix inverse.

I found adj(A) to be:

\[\begin{pmatrix} -17 &9 &5 \\ 7 &-9 &-10 \\ -39 &18 &30 \end{pmatrix}\]

and I found the determinant of A to be -45 and the determinant of adj(A) to be 2025.

Now based on:

\[adj(A^{-1})=(adj(A))^{-1}\]

I tried solving the question, I did:

\[B=adj(A))\]

and looked for:

\[B^{-1}\]

This way:

\[B^{-1}=\frac{1}{\left | B \right |}adj(B)\]

and got:

\[\frac{1}{2025}A\]

which is not the answer. the answer should be:

\[-\frac{1}{45}A\]

And I don't understand what I did wrong here.

Thank you
 
Physics news on Phys.org
Yankel said:
Hello all, I have a matrix A:

\[\begin{pmatrix} 2 &4 &1 \\ -4 &7 &3 \\ 5 &1 &-2 \end{pmatrix}\]

and I need to find the adjoint of the matrix inverse.

I found adj(A) to be:

\[\begin{pmatrix} -17 &9 &5 \\ 7 &-9 &-10 \\ -39 &18 &30 \end{pmatrix}\]

and I found the determinant of A to be -45 and the determinant of adj(A) to be 2025.

Now based on:

\[adj(A^{-1})=(adj(A))^{-1}\]

I tried solving the question, I did:

\[B=adj(A))\]

and looked for:

\[B^{-1}\]

This way:

\[B^{-1}=\frac{1}{\left | B \right |}adj(B)\]

and got:

\[\frac{1}{2025}A\]

which is not the answer. the answer should be:

\[-\frac{1}{45}A\]

And I don't understand what I did wrong here.

Thank you

Hi Yankel,

The inverse of $A$ is given by:
$$A^{-1}=\frac{1}{\det A} \text{adj }A$$
See adjugate matrix (as it is called with less ambiguity) on wiki.Speaking about $\det(\text{adj }A)$, it relates to $\det A$ as:
$$\det(\text{adj }A) = (\det A)^{n-1} = (-45)^{3-1} = 2025$$
 
I like Serena, thank you !

among the formulas out there I mentioned that I did find det(adj(A)) to be 2025, it was easy to miss this line.

This is not what I am asking. Taking the first formula you mentioned, I found the adj(inverse of A), and I was wrong, and can't find my mistake.
 
Yankel said:
I like Serena, thank you !

among the formulas out there I mentioned that I did find det(adj(A)) to be 2025, it was easy to miss this line.

This is not what I am asking. Taking the first formula you mentioned, I found the adj(inverse of A), and I was wrong, and can't find my mistake.

We have:
$$A^{-1} = \frac 1{\det A} \text{adj }A$$
Therefore we also have:
$$A = \frac 1{\det A^{-1}} \text{adj}(A^{-1}) \quad\Rightarrow\quad \text{adj}(A^{-1}) = \det A^{-1} \cdot A = \frac 1{\det A} \cdot A$$

Yankel said:
Now based on:

\[adj(A^{-1})=(adj(A))^{-1}\]

I tried solving the question, I did:

\[B=adj(A))\]

and looked for:

\[B^{-1}\]

This way:

\[B^{-1}=\frac{1}{\left | B \right |}adj(B)\]

Let's substitute $B=\text{adj}(A)$. That gives us:

\[B^{-1}=\frac{1}{\left | \text{adj}(A) \right |}\text{adj}(\text{adj}(A))\]

Did you evaluate $\text{adj}(\text{adj}(A))$?
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K