MHB Investigating the Inequality of $\frac{\pi^2}{4}$ and $\frac{-\pi^2}{12}$

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion centers on the inequality between $\frac{\pi^2}{4}$ and $\frac{-\pi^2}{12}$, stemming from the Fourier series representation of the function $f(\theta) = \theta^2$. The equation $\theta^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}\cos n\theta$ is correctly established, but confusion arises when evaluating at $\theta = \frac{\pi}{2}$. The cosine terms simplify, leading to an expression involving only even integers, which alters the series sum. Ultimately, the key issue lies in recognizing the contribution of even terms in the series, which clarifies the relationship between the two values.
Dustinsfl
Messages
2,217
Reaction score
5
$$
\frac{\pi^2}{3} + 4\sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2}\cos n\theta.
$$
Let's look at $f\left(\frac{\pi}{2}\right) = \frac{\pi^2}{4}$.
\begin{alignat*}{3}
\frac{\pi^2}{3} + \sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2}\cos\frac{n\pi}{2} & = & \frac{\pi^2}{3} + \left(\frac{-1}{4} + \frac{1}{16} - \frac{1}{36} + \cdots\right)\\
\frac{1}{4}\sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2} & = & \frac{\pi^2}{4} - \frac{\pi^2}{3}\\
& = &
\end{alignat*}
This isn't going to equate to
$$
\sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}
$$
What is wrong?
 
Physics news on Phys.org
dwsmith said:
$$
\frac{\pi^2}{3} + 4\sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2}\cos n\theta.
$$
Let's look at $f\left(\frac{\pi}{2}\right) = \frac{\pi^2}{4}$.
\begin{alignat*}{3}
\frac{\pi^2}{3} + \sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2}\cos\frac{n\pi}{2} & = & \frac{\pi^2}{3} + \left(\frac{-1}{4} + \frac{1}{16} - \frac{1}{36} + \cdots\right)\\
\frac{1}{4}\sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2} & = & \frac{\pi^2}{4} - \frac{\pi^2}{3}\\
& = &
\end{alignat*}
This isn't going to equate to
$$
\sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}
$$
What is wrong?
It would have been a great deal easier to understand this question if you had thought to mention that this is the Fourier series of the function $f(\theta)= \theta^2.$

You have given the Fourier series correctly, and the function is equal to the sum of the series, so you should be starting with the equation $$\theta^2 = \frac{\pi^2}{3} + 4\sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2}\cos n\theta.$$ When you put $\theta = \pi/2$ this becomes $$\frac{\pi^2}4 = \frac{\pi^2}{3} + 4\sum_{n = 1}^{\infty}\frac{(-1)^n}{n^2}\cos \bigl(\tfrac{n\pi}2\bigr).$$ The value of $\cos \bigl(\tfrac{n\pi}2\bigr)$ is zero when $n$ is odd, and it is $(-1)^k$ when $n=2k$ is even. Therefore $$\frac{\pi^2}4 = \frac{\pi^2}{3} + 4\sum_{k = 1}^{\infty}\frac{(-1)^k}{(2k)^2}.$$ Notice the $(2k)^2$ in the denominator!
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K