Irreducible polynomial over finite field

Click For Summary
SUMMARY

The discussion focuses on factoring the polynomial x^16 - x over finite fields F4 and F8. Participants establish that x^16 - x splits completely over F16, while F4 allows for complete factorization into linear factors. However, F8 presents challenges due to its lack of linear factors beyond 0 and 1. The relationship between F16 and F8 is clarified, emphasizing that there is no homomorphism mapping one onto the other, as their multiplicative group orders do not divide each other. The conversation concludes with insights on the degrees of elements in these fields and their implications for factorization.

PREREQUISITES
  • Understanding of finite fields, specifically F4, F8, and F16.
  • Knowledge of polynomial factorization techniques over finite fields.
  • Familiarity with Galois theory and field automorphisms.
  • Concept of irreducibility and degrees of polynomials in field theory.
NEXT STEPS
  • Study the properties of finite fields, focusing on F4, F8, and F16.
  • Learn about polynomial factorization over finite fields, particularly using minimal polynomials.
  • Explore Galois theory and its applications in understanding field extensions.
  • Investigate the relationship between the degrees of elements in finite fields and their irreducibility.
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in the theory of finite fields and polynomial factorization.

Zoe-b
Messages
91
Reaction score
0

Homework Statement


Factor x^16-x over the fields F4 and F8

Homework Equations


factored over Z (or Q), x^16-x = (x*(x - 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)


The Attempt at a Solution



I know the that quadratic and higher terms I have left do not have any linear factors.. I'm obviously missing something. But even with that I'm not really sure how to start checking- I *think* I'm right in saying I can check for irreducibility over F2 first, because that would be implied by irreducibility over the larger field. Then there are less polynomials to check, but still a fair few for the term of degree 8..

Thanks in advance :)
 
Physics news on Phys.org
Try factoring over F16 first. :smile:
 
Ok.. so x^16-x splits completely over F(16) because the non-zero elements form a multiplicative group and each element a satisfies a^16= a
My problem now is that I really have very little concept of how the fields F(16) and F(8) are related to each other- for a while after starting this question I was thinking of them as being integers modulo 16 (or 8 respectively) but this is clearly wrong. How can I factor it into something with coefficients in F(4) without knowing how the elements of F(4) interact...?
 
As far as I can tell F8 and F16 are unrelated.
That is, there is no homomorphism that maps one onto another, since the orders of the respective multiplicative groups do not divide each other (being respectively 7 and 15).

So I'm very interested in what Hurkyl intended.


I was able to factorize the 8th degree polynomial into 4th degree polynomials by setting (in either F4[x] or F8[x]):
$$x^8 - x^7 + x^5 - x^4 + x^3 - x + 1 = (x^4 + ax^3 + bx^2 + cx + 1)(x^4 + (a+1)x^3 + b^{-1} x^2 + (c+1)x + 1)$$

This is solvable in F4 and also in F8.
After that I could repeat the process with 2nd degree polynomials (with the last coefficient unequal to 1 btw).
 
Well F(16) is useful for F(4)- I think because 4=2^2 , 16= 2^4 and 2 divides 4. Clearly 3 does not divide 4 so I'm struggling to see the relevance to F(8). I've now done it (I think!) for F(4), the polynomial splits completely into linear factors, each repeated 4 times. These are precisely the roots of x^4 - x, but (x^4-x)^4 gives x^16-x. This is dependent on being able to equate x^4 with x in F(4) but I think this is valid since every element of F(4) satisfies this equation.

F(8) has no linear factors other than 0,1 though so still a bit stuck..
 
I just checked and I can find no mapping of F16 to F4 that retains the field structure (adding as well as multiplication), so I do not see how factorization in F16 would help.
 
Its not a mapping- F(4) is contained within F(16), no?
 
The elements are contained, but the multiplication and addition tables are different.
 
I Like Serena: The subset of \mathbb{F}_{16} of solutions to x^4 - x form a subfield of \mathbb{F}_{16}. Since it has 4 elements it must be (isomorphic to) \mathbb{F}_{4}. In the language of Galois theory, x \mapsto x^4 is a field automorphism of \mathbb{F}_{16}. \mathbb{F}_{4} is (isomorphic) to its fixed field.

If \alpha and \beta are primitive elements (over \mathbb{F}_{2}) of \mathbb{F}_{4} and \mathbb{F}_{16}, then send \alpha \mapsto \beta^5 (or to \beta^{10})



Zoe-b said:
My problem now is that I really have very little concept of how the fields F(16) and F(8) are related to each other-
They don't much.

\mathbb{F}_{16} consists of 2 elements of degree 1, 2 elements of degree 2, and 12 elements of degree 4 (over \mathbb{F}_{2}.

\mathbb{F}_{8} consists of 2 elements of degree 1 and 6 elements of degree 3.

How do I know these facts? Because I know all of their subfields. The calculation would be a little more involved for, say, \mathbb{F}_{64}, but still a straightforward combinatorial exercise.


Since gcd(3,4) = 1, every element of \mathbb{F}_{16} of degree 4 over \mathbb{F}_{2} must also be degree 4 over \mathbb{F}_{8}. (of course, that same element would be degree 2 over \mathbb{F}_{4})


There are various equivalent descriptions of \alpha being degree n over \mathbb{F}_{q}:
  • \mathbb{F}_{q}(\alpha) \cong \mathbb{F}_{q^n}
  • The minimal polynomial of \alpha over \mathbb{F}_{q} has degree n
  • The orbit of \alpha under x \mapsto x^q (i.e. the set \{ \alpha, \alpha^q, \alpha^{q^2}, \alpha^{q^3}, \cdots \}) has n elements. (and these are the roots of the aforementioned minimal polynomial)


Just knowing the degrees of the roots (and that they're distinct) over \mathbb{F}_2 tells me that the irreducible factorization (over \mathbb{F}_2) is
x^{16} - x = <linear> <linear> <quadratic> <quartic> <quartic> <quartic>​
In fact, if I have a model of \mathbb{F}_{16} and know an algorithm for computing minimal polynomials, I could use it to actually compute the factors.
 
Last edited:
  • #10
Hurkyl said:
I Like Serena: The subset of \mathbb{F}_{16} of solutions to x^4 - x form a subfield of \mathbb{F}_{16}. Since it has 4 elements it must be (isomorphic to) \mathbb{F}_{4}. In the language of Galois theory, x \mapsto x^4 is a field automorphism of \mathbb{F}_{16}. \mathbb{F}_{4} is (isomorphic) to its fixed field.

If \alpha and \beta are primitive elements (over \mathbb{F}_{2}) of \mathbb{F}_{4} and \mathbb{F}_{16}, then send \alpha \mapsto \beta^5 (or to \beta^{10})

I see! :)
A subfield.

So we can factorize ##x^{16}-x## into first degree polynomials with each of the elements of F16.
And by selecting smart combinations of 2 factors, we can find quadratic ones in F4.
Nice!

But if I see it correctly, this does not work with F8.
F16 does not seem to have a subfield that is isomorphic with F8.


\mathbb{F}_{16} consists of 2 elements of degree 1, 2 elements of degree 2, and 12 elements of degree 4 (over \mathbb{F}_{2}.

\mathbb{F}_{8} consists of 2 elements of degree 1 and 6 elements of degree 3.

This I don't get.

I thought the multiplicative degrees of the 2 non-identity elements in F4 would be 3.
In F8 the (multiplicative) degrees of the 6 non-identity elements would be 7.
And F16 would have 2 elements of order 3, 4 elements of order 5, and 8 elements of order 15.

The additive degrees of all non-identity elements would be 2 in each of the fields.

How are you counting this?
 
  • #11
I like Serena said:
How are you counting this?
I did give a list of things equivalent to what I mean by degree. :-p

(p.s. I've never heard the concept you described called "degree". I usually hear it called the "order" of an (group) element)

(p.p.s. if you need to think in terms of subfields, you can use \mathbb{F}_{2^{12}}, which contains both \mathbb{F}_{8} and \mathbb{F}_{16})
 
  • #12
Hurkyl said:
I did give a list of things equivalent to what I mean by degree. :-p

(p.s. I've never heard the concept you described called "degree". I usually hear it called the "order" of an (group) element)

(p.p.s. if you need to think in terms of subfields, you can use \mathbb{F}_{2^{12}}, which contains both \mathbb{F}_{8} and \mathbb{F}_{16})

Yeah well, I did not understand everything you wrote, so I just started at the beginning.
And you caught me - English is not my native language and in my language there is no distinction between the words degree and order.

But what do you mean by degree then? Do you mean the degree of polynomials?

As I understand it F8 is isomorphic with ##(\mathbb{Z}/2\mathbb{Z})[T]/(T^3+T+1)##.
So its elements are ##\{0, 1, T, T^2, T+1, T^2+T, T^2+T+1, T^2+1\}##, which can also be written as ##\{0, 1, T, T^2, T^3, T^4, T^5, T^6\}##.
But the degrees of these polynomials do not appear to correspond to the degrees you mentioned.

I'm still not getting it. :cry:
 
  • #13
I like Serena said:
But what do you mean by degree then?

I mean

Hurkyl said:
There are various equivalent descriptions of \alpha being degree n over \mathbb{F}_{q}:
  • \mathbb{F}_{q}(\alpha) \cong \mathbb{F}_{q^n}
  • The minimal polynomial of \alpha over \mathbb{F}_{q} has degree n
  • The orbit of \alpha under x \mapsto x^q (i.e. the set \{ \alpha, \alpha^q, \alpha^{q^2}, \alpha^{q^3}, \cdots \}) has n elements. (and these are the roots of the aforementioned minimal polynomial)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
48
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K